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Introduction 
Traditionally, highly regulated industries (such as the pharmaceutical industry), have limited themselves 
to the use of commercially available software. When taking such an approach, the responsibility for the 
validation and testing of the product was often delegated to the software development company 
themselves, to ensure the software performs in line with its documentation, producing accurate reliable 
and reproducible results. However, one downside of this approach is that new methods and 
functionality can be slow to be adopted, limiting new method implementation and tools that can bring 
in efficiencies.  With the increase in popularity of data science, the rate at which community led tools 
and methods are being developed in open-source software is rapid.  The availability of advanced 
analytic capabilities, has led to increased desire for clinical data scientists in regulated industries to have 
access and approval to use to open source software (Rimler et al. 2022).  The use of open-source 
software is now widely accepted (FDA 2015), however, the increased variety of tools has resulted in an 
overlap of capabilities. This has raised challenging questions of traditional approaches to clinical 
analyses – particularly in situations where the overlap yields different results. One example of this 
challenge encompasses discrepancies which have been discovered in statistical analysis results between 
different programming languages, even when working within qualified statistical computing 
environments. Subtle differences exist between the fundamental approaches and assumptions 
implemented within each language, yielding differences in results which are correct and consistent with 
their respective documentation. The fact that these differences exist may cause unease for sponsor 
companies when submitting to a regulatory agency, as it is uncertain if the agency will view these 
differences as problematic. By understanding the source of any discrepancies, one can reinstate that 
confidence.  
 
This white paper aims to empower clinical data scientists to make informed choices on the 
implementation of statistical analyses when multiple languages yield different results. Our objective is 
not to prescribe what that choice should be, but rather provide guidance on the types of questions 
clinical data scientists should ask to identify the fundamental sources of discrepant results. Our objective 
is also to invite the wider community to contribute to an open source repository designed for Comparing 
Analysis Method Implementations in Software (CAMIS: https://github.com/PSIAIMS/CAMIS).  
 
 

https://github.com/PSIAIMS/CAMIS


Background 
As clinical data analytics evolves within the pharmaceutical industry, a large and noteworthy contingent 
of people and organizations have explored the use of various computational technologies as an effort to 
reimagine how to tell the story about the data that is collected during a clinical trial. These technologies, 
whether available commercially or as open source, offer new potential in the ability of a sponsor 
company to discover new medicines and demonstrate that they can be safely and effectively 
administered to patients for a given indication. We see applications of machine learning and artificial 
intelligence being built into exploratory analyses as well as automation of conventional reporting 
pipelines. We are witnessing a desired transformation of how we deliver clinical insights from flat data 
files with rows/columns and compiled PDF reports, into dynamic visualization platforms which facilitate 
a reviewer to explore the trial database in a three-dimensional way. It has also been noted, that the 
tools that other industries most commonly used for these ‘new’ ways of data engineering, data 
analytics, and data reporting, are often built on programming languages not historically used within the 
pharmaceutical industry.  We are therefore experiencing a dramatic shift away from dependence on a 
small set of commercially available software solutions and towards embracing many languages to build 
and use the best-fit tools to extract the most knowledge from clinical data.  
 
The overdependence on a single solution from one programming language brought to light an element 
of our data analytics outputs that was previously overlooked. Within the clinical reporting pipeline 
(transforming patient level clinical trial data from collection to submission), the industry has 
predominantly relied on comparing results to an independently generated second set of results as the 
primary form of quality control (QC). In the early years, comparisons were made on paper and 
thoroughly verified by a human that the number in the table matched the number independently 
derived by a second programmer. As technology progressed, electronic comparisons of the output data 
presented in a table reduced the risk of human error that the validator missed a discrepancy. The theory 
is that if two people put the same inputs through two independently developed processes and achieve 
the same outcome, then the outcome must be right. It’s not a perfect system and it can produce false 
positives, but efficiencies were gained and quality improved. However, up until recently, the QC process 
has nearly always been implemented with the same programming language being used, both for the 
generation of results (‘on production’) and for independent QC. The shift in the industry to explore other 
languages has now raised questions such as “What if the numbers don’t match? Which is correct?”  
 
An example of this question is comparing rounding rules between SAS® and R. It is now becoming well 
understood that the default rounding rule (implemented in the respective language’s round() function) 
are different, but only when the number being rounded is equidistant between the two possible results. 
The round() function in SAS will round the number ‘away from zero’, meaning that 12.5 rounds to the 
integer 13. The round() function in Base R will round the number ‘to even’, meaning that 12.5 rounds to 
the integer 12. SAS also has the rounde() function which rounds to even and the janitor package in R 
contains a function that rounds away from zero. In this use case, SAS produces an accurate result from 
its round() function, based on its documentation, as does R. Both are accurate based on what they say 
they do, but they produce different results.  
 
Clinical data scientists must then decide how do I round this result? Should I round in line with the R 
default or the SAS default and why? To answer this question, clinical data scientists need to understand 
the rationale behind round-to-even rule and the round-away-from-zero rule, and even other rounding 
rules that may exist. To our knowledge, this ‘how do I round’ question has never been asked with 
respect to clinical trial reporting until the difference between R and SAS default rounding was 



discovered. The ‘correct’ answer is up to the clinical data scientists to determine and justify. For 
example, with the appropriate number of significant digits, the difference between these results may be 
inconsequential to interpretation when presenting data on a table. However, rounding to even is 
intended to avoid biasing results away from zero, and if this is a risk within an analysis it should be 
carefully considered as potentially being the better option. 
 
Why should clinical data scientists care? Why does it matter? One answer is because they want to tell 
the most accurate story of their data, but more importantly in the highly regulated pharmaceutical 
industry - a third-party reviewer will be assessing the integrity of the data. If the reviewer attempts to 
reproduce the same results and chooses a different language, the clinical data scientists must be able to 
explain why results may differ, otherwise the integrity of the entire data package may be questioned. 
Understanding the implications of choosing a statistical modelling implementation in Language A vs 
Language B, the clinical data scientists can communicate the rationale of the choice, based on sound 
statistical reasoning, and instil confidence to the regulatory body reviewing the submitted data. 
Moreover, when should clinical data scientists start considering any issues mentioned above? They 
could consider them when planning the study, draft statistical analysis plans (SAPs) and performing 
analysis.    
 
It should be noted that in what follows, it is assumed that statistical packages and routines perform their 
methods in a manner consistent with their documentation. The question at hand is not whether the 
procedures are accurate or reliable, but rather in what ways do similar implementations across 
languages differ. Hence, we are not concerned here with another major area of discussion within the 
industry – the validation of packages and software. 
 

Analysis Framework  
With the number of statistical packages and macros currently in use, clinical data scientists face a 
considerable number of questions to answer: for example, which package should I use? What degree of 
precision is required? Are the analyses reproducible? Here we propose a framework to help guide the 
clinical data scientists in their thinking in determining the most appropriate statistical analyses for their 
application which will help to answer these questions.  This framework is not to be taken as a 
determinative solution. Rather, it should help start the conversation between the clinical data scientists 
and other relevant parties.  
 

Step 1: Define research question  
The research question should be clearly specified in the protocol and SAP. Hence the first step of the 
analysis statistician should be to familiarise themselves with the research questions. If the clinical data 
scientists does not keep this in mind, the remaining steps will turn into a cycle that remains unguided in 
the overall purpose of the study in question.  
 
 

Step 2: Define the statistical design to examine the research questions  
The statistical designs are often informed by the protocols and procedures set in an experiment. 
Considerations such as estimands, randomization based on inclusion/exclusion criteria, stratified 
analyses, etc. help determine the model-making process.   
 

Step 3: Looking at technical aspects  



The clinical data scientists should perform a basic literature search to determine how to implement the 
statistical models as specified. There are a variety of packages that exist that may perform the same 
analyses, but utilize other kinds of optimization routines in the backend. Here is a starting list of 
questions to consider:  

• Which model (and corresponding summary statistics) should be used to answer the research 
question based on the study design? 

• What are the key factors of the model, e.g. coefficient and variance estimation procedures, 
missing data strategy? 

• Can the analysis be carried out in R, or SAS, or some other platform that is available to the 
organization?  
• If the analysis can be implemented in both R and SAS, what are the differences in 
documentation of the key factors?  

These questions should be answered in context of the statistical design and be consistent with the 
organization’s previous practices in similar trials where applicable. 
 

Step 4: Carry out the model and document the analyses  
After considering all the technical considerations, the clinical data scientists should carry out the analysis 
as planned and document accordingly to enable reproducibility of the results. Details such as the R/SAS 
version, packages and macros used, etc., should be recorded.    

 
 

A 4-step algorithm to aid choice of statistical software and 

methods 

 
  

Framework Application  
We will now consider an application of the proposed framework in the context of survival analysis using 
the data of 500 subjects from the Worcester Heart Attack Study1.  This class of statistical model has 



produced the richest set of numerical differences amongst the use cases that CAMIS has investigated 
(Jen & Qi, 2021, 2022). The main goal of this study was to describe factors associated with trends over 
time, in the incidence and survival rates following hospital admission for acute myocardial infarction. 

 
Step 1: Define the Research Question  
The objective in this use case is to evaluate efficacy of receiving artery fibrillation treatment in 
comparison without receiving treatment in terms of the survival time for patients with heart attack.   
 
 

Step 2: Define the statistical design to examine the research question  
 
This is a longitudinal study of residents of the Worcester, Mass, metropolitan area hospitalized with 
acute myocardial infarction (AMI) in 7 one-year periods between 1986 and 1997 in whom information 
about prehospital delay was available. Subjects were followed up for death status and follow up time for 
all participants begins at the time of hospital admission after AMI and ends with death or loss to follow 
up. 
 
Since the survival status and survival time are both collected. Survival analysis is the most appropriate 
statistical method to answer the research question. For the survival time, the Kaplan-Meier (KM) 
method (Kaplan and Meier, 1958) will be used to generate KM curves, the medians, quantiles and 
percentages of patients' event-free estimate in every 3-month interval for each arm will be summarized. 
In the possible presence of substantial number of small cells, the hazard ratio (HR) for treatment effect 
and its 95% confidence interval (CI) will be estimated using un-stratified Cox proportional hazard (PH) 
semi-parametric model (Cox 1972) and a unstratified log-rank test () will be performed. P-value from 
log-rank test will be used to determine the impact of artery fibrillation on survival time after heart 
attack. 
 

Step 3: Looking at technical aspects  
As a statistician, there is a common understanding that the Cox proportional hazards model is widely 
available in various platforms such as R/SAS/Python, etc. One may ask the question, does both SAS and 
R implement the Cox Proportional Hazards and from there, check the documentation for how certain 
statistical methods are handled, such as the confidence interval computation, optimization routines, etc. 
We consider an initial set of questions the clinical data scientists may consider.  

• What are the key factors of the Cox proportional hazards model, KM method, and log-rank 
test? 

Cox model: A semiparametric model assumes proportional hazards 
Coefficient estimation: The coefficient is estimated by maximizing the partial likelihood 
and computed by iterative algorithms, e.g. Newton-Raphson method. The partial 
likelihood function is impacted by tie-handling approach. 
Variance estimation: The model-based variance estimate is obtained by inverting the 
information matrix. 
Missing data: Observations with a missing value for either the failure time, the censoring 
variable or explanatory variables are not used in the analysis. No missing data in the 
example dataset. 
KM method: The KM method calculates the probability of occurrence of an event at a certain 
point of time (Breheny P.,). The estimate of the standard error is computed using Greenwood’s 



formula. The confidence intervals for the quantile survival time and landmark estimate are 
based on a g-transformed confidence interval for the survival time. 
Log-rank test: A non-parametric test using rank statistics. 

• Can the analysis be carried out in R, SAS, or some other platform that is available to the 
organization? 
After looking at SAS 9.4, we observe that we can model the Cox PH model using SAS PHREG and 
KM curves and log-rank test can be performed using SAS LIFETEST, while in R, we can use coxph, 
survfit in the survival package (survminer.pdf (r-project.org)) for Cox model and KM estimations 
(Therneau, 2022), (Kassambara & Kosinski, 2021).  

• Are there different methods for handling ties in the data?  
Both SAS/R, according to their documentation, handles Efron’s method, Breslow’s method, and 
the exact method. By default in SAS, the method is Breslow. In R, the default is Efron. There is a 
reference that indicates that both utilize the same paper (Breslow 1974, Efron, B 1977).  

• Are there differences in the optimization routines used to compute the maximum likelihood 
estimates for the treatment (with or without receiving artery fibrillation treatment)?   

In SAS, the routine used is a modified Newton Raphson method (Heinze and Schemper, 2001) 
while in R, uses the standard Newton Raphson method with half-stepping.  

• Etc.  
 

Step 4: Carry out the model and document the analyses  
Once an initial inventory of the technical considerations has been developed, the clinical data scientists 
should carry out the analyses as intended. Below, we indicate for this example that the staff carried out 
the analyses in both R and SAS for exploratory purposes. Typically, they may implement this in one 
statistical programming language.  
 

  
  
We note that there are small differences (highlighted in red) which may lead us to consider asking 
several further questions to justify the clinical data scientists’s choice of platform. For example, how is 
the upper bound of the confidence intervals estimated? It is expected that the clinical data scientists will 
cycle between Step 3 and Step 4 to account for any discrepancies which may or may not be addressed 
by the statistical analysis plan such as the optimization routine or default methods which are often not 
specified during the planning stage of the analysis. After further consideration, according to the 

https://cran.r-project.org/web/packages/survminer/survminer.pdf


software documentations on handling ties, we learn that the values presented are different because of 
the following:  

• The default method for handling ties between the two platforms is different. The survival 
package in R uses Efron’s method of handling ties while SAS uses Breslow’s method. In fact, both 
options are available in R and SAS, so by simply changing the default method, we would expect an 
identical HR and CI (Franklin D.). From the arguments of coxph: There are three possible choices for 
handling tied event times. The Breslow approximation is the easiest to program and hence became 
the first option coded for almost all computer routines. It then ended up as the default option when 
other options were added to “maintain backwards compatibility”. The Efron option is more accurate 
if there are many ties, and it is the default option in R. In practice, the number of ties is usually 
small, in which case all the methods are statistically indistinguishable. All 3 methods are 
asymptotically equivalent which is an ideal property to construct the relevant estimators (Hertz-
Picciotto I. and Rockhill B., 1997).  
• The default method for confidence intervals of the KM estimates is different. R uses “log”, and 
SAS uses “log-log”. R and SAS both offer the same types of confidence intervals but must be 
specified. “log-log” prevents the problem of having confidence intervals of >1 or <0, which might 
happen if using “log” transformation. However, both R and SAS will clip the interval at [0, 1] and 
report a bound >1 as 1 and <0 as 0.  

 
  
  
We constructed a framework which may prove useful for the clinical data scientists in considering the 
technical aspects of implementing the desired analyses. The clinical data scientists may cycle between 
Steps 3 and 4 to provide a more exhaustive approach. We illustrate an example using both SAS and R to 
provide a frame of reference, though typically the clinical data scientists may implement the analysis in 
one language which should require careful attention to the available documentation and methods being 
applied.   
 

Call to action 
This whitepaper outlines a framework for addressing discrepancies between statistical languages, and 
there is no doubt that this is a cumbersome and complex task – particularly for an organization to 
approach alone. Therefore, the PHUSE initiative CAMIS (Comparing Analysis Method Implementations in 
Software), in collaboration with PSI are inviting all organizations, working groups, and individuals to 
collaborate to an open-source repository to store and share similarities and differences found when 
implementing analysis methods in different software. Although work to date has been focused on SAS 
and R, the framework intends to quickly extend to allow contributions using other open-source software 
such as python and Julia.  The repository aims to be the single go to source that the community access 
when they find differences running analysis methods in software. 
As more findings are uncovered and stored in this repository accessible to all, it will naturally improve 
the quality of data analysis produced as an industry and reduce duplication of efforts. To facilitate this 
work, PHUSE/PSI have initiated a https://github.com/PSIAIMS/CAMIS repository. Contribution is 
welcome from all, and contact can be made through workinggroups@phuse.global or the GitHub 
repository directly. 
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