
Script Metadata Recommendation for Sharing

1 | PHUSE Deliverables

Script Metadata
Recommendation

for Sharing

phuse.eu

Version Date Summary

1.0 June 1, 2018 Initial draft

1.0 Oct 15, 2018 Final draft

Revision History

Script Metadata Recommendation for Sharing

2 | PHUSE Deliverables

Contents

1. Background and Overview . 1

2. Scope . 1

3. Definition . 1

4. Problem Statement . 1

5. Recommendation. 1
	 5.1. YML and Script Metadata format . 1
	 5.2. Naming conventions . 2
	 5.3. Folder structure . 2
	 5.4. Primary script metadata groups . 3
	 5.5. Secondary script metadata groups. 4
	 5.6. YML and Script Metadata format. 4
	 5.7. R PHUSE package. 4
	 5.8. Web application framework. 5

6. Disclaimer . 5

7. Acknowledgements . 5

9. Project Leader Contact Info . 5

9. References . 6

10. Appendices . 6
	 10.1. Examples of accessing the scripts in the repository . . . 6
		 10.1.1. R example . 6
		 10.1.2. SAS example . 6
	 10.2. Access to the test data in the repository 6
		 10.2.1. Read data using R . 6
		 10.2.2. Read data using SAS . 6

Script Metadata Recommendation for Sharing

Script Metadata Recommendation for Sharing

1 | PHUSE Deliverables

1. Background and Overview

Since the PHUSE-scripts repository was created in Github
in 2013, many scripts were hosted in the repository. The
Standard Analyses and Code Sharing working group in PHUSE
recommended coding style and guidelines and developed
qualification process to review, develop and share the scripts.
Many developers from other working groups started using
the repository to share and host their scripts as well. This
growth requires us to develop guideline for organizing the files
in the repository and documenting the scripts consistently.
Currently it is difficult to find the scripts and even more difficult
to execute the scripts once you find and download them. You
usually need to make change to the original script to make it
work in your own environment. Wouldn’t it be nice if you could
automatically download and execute a script once you know
the name of a script and only need to provide a few parameters
in a configuration file (script metadata file)? This white paper
explores how to use recommended script metadata to increase
the accessibility, reusability and automation of scripts.

The script metadata contains data about the script’s purpose,
program version, execution environment, library and data files
used, inputs, outputs, etc. The goals of the script metadata
are 1) to document the scripts, 2) to provide all the inputs, 3)
to execute the script without making any change to the script,
and 4) to make the scripts more accessible, more reusable,
and possible for future automation. This white paper discusses
the recommended metadata for scripts and uses R and SAS
scripts to demonstrate the concept of using script metadata to
automate the execution of a script.

4. Problem Statement

The working group recommends folder structure, file naming
convention, and initial script metadata in YML format. The
difficulties facing the users are:

• �Not easy to find scripts due to a) script metadata are not
defined thus the metadata files are not consistent; b) the index
page based on metadata files are not updated promptly;

• �Not easy to navigate in the repository due to a) scripts are not
well organised; b) the folders are deep and complicated;

• �Not easy to use the scripts due to a) need to download
the scripts; b) modify the scripts. You usually need to make
changes to the original script to make it work in your own
environment.

Wouldn't it be nice if you could automatically download and
execute a script once you know the name of a script and
only need to provide a few parameters in a configuration file
(script metadata file)? This white paper will explore how to use
script metadata to increase the accessibility, reusability and
automation of scripts in the repository. The metadata will make
it easy to share, access and execute scripts in the repository.
R and SAS will be used to prototype the use of the metadata
in sharing the script and its components and running the script
with input selections and output files or graphics.

5. Recommendation

We will document the recommendation on script metadata
format, folder structure, name convention, metadata groups and
elements in this section.

5.1. YML and Script Metadata format

According to Wikipedia, metadata means "data about data". It is
a set of data that describes and gives information about other
data. The script metadata provides the information about the
script’s purpose, scope, version, author, executing environment,
etc. It is not only critical to develop useful and executable scripts
for clinical analyses, but also to maintain important information

2. Scope

This white paper only documents the recommended script
metadata and explores the possible ways to use the metadata.
It is not intended to define a metadata repository. How to use
the metadata and implement in different repository or execution
environment is left to the developers.

3. Definition

Here are the terms and phrases used in this documents:

• �Script or program: a piece of code written for a special
run-time environment that automates the execution of tasks
which could alternatively be executed individually by a human
operator. Scripting languages are often interpreted rather than
compiled.

• �Metadata: data about a script including information such as its
purpose, program version, execution environment, library and
data files used, inputs, outputs, etc.

• �Repository: a storage environment for all of the scripts,
metadata and documents.

• �Git: a version control system for tracking changes to the files
in the repository and coordinating work on those files among
multiple people. It is the underlying system used for supporting
GitHub.

• �GitHub: a web-based hosting service for version control using
Git. It is used as a platform for hosting the repository and

Doc ID: WP-006 Version: 1.0 Standard Analysis and Code Sharing

collaboration among contributors.
• �YML and YAML: YAML (YAML Ain't Markup Language,

shortened as YML) is a human-readable data serialization
language. It is used as metadata format for documenting
scripts in the repository.

• �R: an open source programming language used for statistical
computing and data visualization.

• �R Shiny: an R package used to develop website. In this context,
it is used to test the concept of using script metadata to
execute a script in the application framework.

• �SAS: a commercial programming language used for statistical
computing and data visualization.

• �CRAN: The "Comprehensive R Archive Network" (CRAN)
is a collection of sites which carry identical material,
consisting of the R distribution(s), the contributed extensions,
documentation for R, and binaries. The CRAN master site at
Wirtschaftsuniversität Wien, Austria, can be found at the URL:
http://CRAN.R-project.org/.

Script Metadata Recommendation for Sharing

2 | PHUSE Deliverables

about the scripts so that users can not only understand the
scripts but also can execute the script with as little change as
possible or no change at all to the script itself.

In the life cycle of developing a script, there are multiple types
of metadata that are relevant and important to collect. They can
be classified as structural/control metadata and guide metadata
(Bretheron & Singley, 1994), or technical, business and process
metadata (Ralph Kimball, 2008) or descriptive, structural and
administrative metadata (NISO, 2010). The following groups
of script metadata can be important for understanding and
executing a script. We recommend the following metadata
groups:

• �Keywords: a list of words used to categorize the script such as
analysis, boxplot, etc.

• �Script: this metadata group defines the name, version, short
and long description of the script.

• �Language: this metadata group provides the information about
the script language such as SAS 9.4.0, R 3.4.0, etc.

• �Environment: provides the computing environment of the
script language and the special language configuration.

• �Inputs: defines the input datasets and parameters required for
the successful execution of the scripts. This is required script
group.

• �Parameters: defines the input parameters used by a script. It is
required script group.

• �Outputs: provides the expected output datasets, variables,
reports, tables, graphs, etc. This is an optional script group.

• �Repo: provides the hosting repository information. This is
required.

• �Authors: documents the developers who create or contribute
to the development and qualification of the script.

• �Qualification: documents the qualification state and process.
• �Stages: provides the historical status of the scripts.
• �Ratings: records the users who review and give the rating

about the script.

Each metadata group may have a list of elements (tags) or
multiple sets of elements (tags) to provide detailed information
about the script. A tag is an element of metadata further defining
the script. Here are some conventions about the metadata group
and tags:

1.	 the metadata group tag starts with a capitalized letter;
2.	 all the sub-tags in a metadata group should be in lower case;
3.	� a plural name for the metadata group means that it can have

multiple sets of the sub-tags.

5.2. Naming conventions

It is very important to have a consistent naming conventions.
This is what had proposed for scripts and script metadata files:

• �For scripts: {prg|sub-cat}[_{term}][_ref].{ext}
• �For metadata file: {prg|sub-cat}[_{term}][_ref]_{ext}.yml

Where

• �prg is a root name or category or class for your programs;
• �sub-cat is a subcategory or analysis area for your programs;
• �term is terminology or type of your analysis, it is optional;
• �ref is a reference to a white paper or any document that

defines the analysis;

• �ext is the file extension to indicate a language such as R, sas,
etc.

For example:

• �Scripts: PK_dual_box.sas, PK_dual_box.R
• �Metafiles: PK_dual_box_sas.yml, PK_dual_box_R.yml

The extension .yml indicates a metadata file corresponding to a
script with the same file name.

5.3. Folder structure

The work_dir defines the local folder where the files related to
the script will be downloaded to. Here is a recommended folder
structure for storing scripts, data and metadata files right under
work_dir:

• �./conf – store any configuration files
• �./data – datasets used by scripts
• �./lib - script libraries, macros or utility programs
• �./log – store the log files; this starts empty.
• �./pkg – store R or other language packages
• �./script – store script files
• �./output – store output files such as dataset, reports, graphs,

etc; this starts empty.

These folders should be created automatically once the files are
downloaded.

Script Metadata Recommendation for Sharing

3 | PHUSE Deliverables

Code Group Elements Req Description Reference

1.0 Keywords Y Key words to be used to categorize and search the script.

2.0 Script Y Metadata tag group for defining the script.

2.1 name Y Script name following the proposed convention: https://github.com/phuse-org/phuse-scripts/
blob/master/naming_conventions_proposed.txt

2.2 title Y Short description of the script

2.3 desc Long description of the script

2.4 category category or class that the script belongs to

2.5 version Y Script version

3.0 Language Y A metadata tag group for defining the language the script is written with

3.1 name Y Name of the language such as SAS, R, XML, etc.

3.2 version Y Version of the language the script is written with.

4.0 Environment Y Metadata tag group for defining computing environment

4.1 system Y Operating system such as Window 2012, Linux, Unix, ANY, etc.

4.2 os_version Operating system version

4.3 desc Description of the computing environment such as OS, version of the OS the language is for.

4.4 debug Define the debug level

4.4.1 msg_lvl A number indicating the message level

4.4.2 log_lvl A number indicating the level of messages to be logged

4.4.3 write2log Whether to write to log file: TRUE|FALSE

4.5 db_conn Define backend database connection

4.5.1 usr User ID in the database

4.5.2 pwd Password for the user (You can have the password encrypted. Do not include clear text
password in the online version of script metadata; you can put the password in your local copy
of the metadata.)

4.5.3 sid Database service name or service id

4.5.5 host Host name or IP address

4.5.6 port Port number such as 1521 default for Oracle SQL*Net

5.0 Inputs Y Metadata group tag for defining the input datasets

5.1 datasets a list of data sets to be used by this script such as dat1, dat2, dat3; It can be in Excel, CSV, XPT
etc.

5.1.1 name name of the dataset

5.1.2 type type of dataset

5.1.3 class class of dataset

5.1.4 req_params a list of required variables in the dataset

5.1.5 version version of the dataset

5.1.6 desc description of the dataset

5.1.7 RShinyUIs Metadata group tab for defining RShiny UI controls

5.1.7.1 control RShiny UI control, one per tag, for example "radioButtons("ft","File
type:",c("PNG"="PNG","TIFF"="TIFF","JPEG"="JPEG"))"

6.0 Parameters Y Metadata group tag for defining input parameters

6.1 p1 1st parameter such as "String - dataset name"

6.2 p2 2nd parameter such as "Number - depart id"

6.3 p3 3rd parameter such as "String - subject id"

7.0 Metadata group tag for defining output datasets and returned variables

7.1 datasets a list of data sets to be used by this script such as dat1, dat2, dat3

7.2 v1 1st output variable such as “Date – start run time”

7.3 v2 2nd output variable such as “Number – during time”

7.4 v3 3rd output variable such as “String – user”

7.5 output_dir Name of an output directory location

8.0 Repo Y Metadata group tag for providing script repository information.

8.1 base_dir Y Repository base/root directory such as https://github.com/phuse-org/phuse-scripts/raw/master

8.2 prog_dir Y Script root directory such as development/R

8.3 repo_dir Y Repository directory such as phuse-org/phuse-scripts

8.4 repo_url Repository URL such as https://api.github.com/repos

8.5 data_dir Repo sub directory where all the input data files stored such as data.

8.6 ib_dir Repo sub directory where all script libraries or utility programs stored such as libs

5.4. Primary script metadata groups The main metadata groups are recommended and listed in
Table 1.
Table 1: Main Metadata Group and Tag Definition

https://github.com/phuse-org/phuse-scripts/blob/master/naming_conventions_proposed.txt
https://github.com/phuse-org/phuse-scripts/blob/master/naming_conventions_proposed.txt

Script Metadata Recommendation for Sharing

4 | PHUSE Deliverables

5.5. Secondary script metadata groups

Some secondary metadata groups are also needed to further
document the life cycle of the script development. Some
suggested metadata groups are listed in Table 2.
Table 2: Secondary Metadata Group and Tag Definition

5.6. YML and Script Metadata format

Once you know what you need to document for a script, then
how can you document the script metadata, use what format
to document the metadata? The Standard Analyses and Code
Sharing working group formerly Development of Standard
Scripts for Analysis and Programming working group got
together and had looked at various formats such as Excel, plain
text, word and languages such as XML and YML. The working
group finally decided to use YML during the PHUSE 2012
conference. YML is a short name for YAML. YAML was said to
mean Yet Another Markup Language, but it was then repurposed
as YAML Ain't Markup Language, a recursive acronym, to
distinguish its purpose as data-oriented, rather than document
markup. The main reason that YML was chosen was because
YML is a data serialization language that can be read by both
humans and machines.

5.7. R PHUSE package

Script metadata provides the information about the script’s
purpose, version, execution environment, library and data
files used, inputs, outputs, review history, ratings, etc. The
metadata make it easy to share, access and execute scripts
in the repository. The PHUSE R package provides a web
application framework for further building a platform for sharing
and accessing the scripts in the repository and some useful
functions included can be used to perform the following tasks:

1.	 Show a script in the repository or in the local repository
2. 	 Display the metadata of the script;
3. 	 Verify the files associated with the script

Code Group Elements Req Description Reference

10.0 Authors Y Metadata group tag for author information; it can have multiple developers.

10.1 name Y The author name such as Jon Doo

10.2 email The email address of the author

10.3 company Organization name the author is associated with

11.0 Qualification Metadata group tag for documenting the qualification process and status

11.1 last_date The last date the script being qualified; the date format is DD-MON-YYYY

11.2 last_by The name of the person who conducted the qualification; the name format is FirstName
LastName

11.3 stage The stage of the qualification such as D

11.4 doc_url a link to qualification documents

11.5 note The description about the qualification such as C - Contributed; D - Development; T - Testing;
Q - Qualified

12.0 Stages Metadata sub-group tag for recording historic qualification stages

12.1 date Date the historical stage of the script in the format of dd-mon-yyyy

12.2 name Name of the person who reviewed and set the stage

12.3 stage The stage of the qualification such as Q

12.4 docs a link to qualification documents

13.0 Ratings Metadata group tag for documenting the ratings users provided

13.1 user The name of user who rate the script

13.2 date The date the user provided the rating

13.3 stars Number in the scale of 1 ~ 5

13.4 asso Association, company or organization name

4. 	� Download the script and its associated utility programs,
macros, data and documents;

5. 	� Merge online and local script metadata if the local script
metadata exists;

6. 	� Execute R scripts in the defined environment.

To make it more useful and meaningful, more tasks need to be
done and more functionalities need to be developed:.

1. 	 Use a predefined template to build script metadata file
2. 	 Update the script metadata files
3. 	� Add script metadata to the newly contributed and developed

scripts.
4. 	 Build script index dynamically against the repository
5. 	� Expand the functionality to other type of scripts such as SAS,

Java, PL/SQL, etc.

There are two ways that you can install R PHUSE package into
your R or RStudio:

• Install from GitHub

install.packages("devtools")
library(devtools)
install_github(”TuCai/phuse")

Install.packages(“phuse”)

• Install from CRAN

Script Metadata Recommendation for Sharing

5 | PHUSE Deliverables

Once you have install the R PHUSE package, you can start the
application framework as following:

The web page currently contains the following 8 action tabs:

1. 	 Script: displays the script if it is readable.
2. 	� YML: displays the content of YML, i.e., the script metadata in

native YML format.
3. 	 Info: displays the information about the YML
4. 	 Metadata: shows the metadata of the script in table format
5. 	 Verify: verifies the existence of the files defined in YML
6. 	 Download: downloads the script to local computer
7. 	 Merge: merges online and local metadata files
8. 	 Execute: executes the script if it is executable.

For more information about the web application framework
and how to use it, please refer to Defining Script Metadata for
Sharing: Using PHUSE R Package as an Example (Presentation).

5.8. Web application framework

Shiny is an R package that makes it easy to build interactive web
apps straight from R. You can also use Shiny server to set up a
web server. Here is a simple web app built in PHUSE package
to test out how to access scripts and their metadata and to test
out how to conduct proof of concept of using script metadata.

Figure 1. PHUSE Script Web Application Framework

library(phuse)
start_phuse()

6. Disclaimer

The opinions expressed in this document are those of the
authors and should not be construed to represent the opinions
of PHUSE members' respective companies or organizations or
FDA’s views or policies. The content in this document should not
be interpreted as a data standard and/or information required by
regulatory authorities.

7. Acknowledgements

The primary contributors include Raphaël Noirfalise, Hal Li, Mary
Nilsson, Nancy Brucken, Sally Cassells, Valerie Williams, Bob
Friedman, Jared Slain, Steve Noga and Hongli Lu.

Thank you to Nancy Brucken for editorial support. Thank you
to all the original authors of the scripts and those involved with
updates to the scripts over time.

8. Project Leader Contact Info

Hanming Tu, VP of IT
Frontage Laboratories, Inc.
700 Pennsylvania Drive, Exton, PA 19341
Office 484.202.6479; Mobile 484.881.2384
Email: htu@frontagelab.com

Wendy Dobson, Project Manager
PHUSE Office, Kent Innovation Centre, Millennium Way,
Broadstairs, Kent. CT10 2QQ
Telephone: + 44 (0) 1843 609605
Email: wendy@phuse.eu

Script Metadata Recommendation for Sharing

6 | PHUSE Deliverables

9. References

• �Good Programming Practice at a Glance, Poster, PhUSE Vienna
2015, PHUSE GPP Steering Board, Mark Foxwell, PRA Health
Sciences, Reading, UK

• �Proposed Folder Structure Recommendation and File Naming
Convention, Github Repository at https://github.com/phuse-
org/phuse-scripts.

• �Metadata Definitions, Metadata Management Project in PHUSE
Emerging Technology Working Group, published on June 6,
2014.

• �Defining Script Metadata for Sharing: Using PHUSE R Package
as an Example (Presentation), PHUSE EU , Edinburgh, UK;
October 8th - 11th, 2017, Paper CT12.

• �R Package PHUSE

10. Appendices

10.1. Examples of accessing the scripts in the repository

The following examples show how to use R and SAS® in the
cloud system to access the scripts in the repository.

10.1.1. R example

To execute the R script in your R environment, execute

10.1.2. SAS example

To execute the SAS script in your SAS environment, execute:

10.2. Access to the test data in the repository

10.2.1. Read data using R

The following example R code shows how to access the test
data stored in the repository:

10.2.2. Read data using SAS

The following example SAS® code shows how to access the test
data stored in the repository:

source("https://github.com/phuse-org/phuse-scripts/
blob/master/contributed/Nonclinical/R/Functions/
Functions.R",echo=T)

options source2 ;
filename code url "https://github.com/phuse-org/phuse-
scripts/blob/master/contributed/Nonclinical/SAS/Utilities/
SEND3.0-to-print%200.5.sas" ;
%include code ;

require(Hmisc)
filename <- "https://github.com/phuse-org/phuse-scripts/
raw/master/data/adam/cdisc/advs.xpt"
theData <- sasxport.get(filename, lowernames = FALSE)
print ("A test of accessing datasets from the PhUSE Code
Repository")
print (theData)

filename source url "https://github.com/phuse-org/phuse-
scripts/blob/master/data/sdtm/cdiscpilot01/ae.xpt" ;
libname source xport ;
data work.adpc ;
set source.adpc ;
keep usubjid ;
run ;
proc print data=work.adpc ;
title1 "A test of accessing datasets from the PhUSE Code
Repository" ;
run ;

