
1 | PHUSE Deliverables

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

Julia for High-Performance
Computing

phuse.global

http://phuse.global

2 | PHUSE Deliverables

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

Contents

Abstract. 1
1. Background About Julia. 1
1.1. Julia Release History. 1
1.2. Julia Key Features. 1
2. Getting Started with Julia. 2
2.1. Julia Installation Steps. .2
Step 1: Download and Install Julia . 2
Step 2: Open the Julia Command-Line. .2
Step 3: Add Julia to Jupyter Notebook. 2
Step 4: Download and Install Anaconda and Products. 3
Step 5: Create a New Notebook. 3
Step 6: Write Your Code. 3
2.2. Recommended Packages. 4
3. Current Real-World Use Cases . 6
3.1. Real-World Use Cases in General. 6
3.2. Real-World Use Cases in Life Science. 6
4. Potential Tasks for High-Performance Computing. 7
5. Recommended Julia Readings and References. 7
6. Conclusion . 7
7. References. 8
8. Acknowledgements. 8

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

1 | PHUSE Deliverables

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

Abstract
Julia is a high-level, high-performance, dynamic programming
language that was designed from the ground up for numerical
and scientific computing. This review paper provides an overview
of Julia’s features and benefits for high-performance computing,
including its fast compilation, dynamic typing, multiple dispatch,
and built-in support for parallelism. It also discusses current
real-world use cases of Julia and potential case studies for high-
performance computing, along with recommended readings and
references for further exploration.

1.	 Background About Julia
Julia is a high-level, high-performance, dynamic programming
language that was developed with the goal of combining the
ease of use of scripting languages such as Python and MATLAB
with the performance of compiled languages such as C and
Fortran. It has had many releases since its initial development in
2009.

1.1.	Julia Release History
Julia was initially developed in 2009 by Jeff Bezanson, Stefan
Karpinski, Viral B. Shah and Alan Edelman, who were motivated
by the limitations of existing programming languages in scientific
computing and set out to create a free language that was both
high-level and fast. The first public release of Julia, version 0.1,
was first introduced in 2012 and has since gained popularity in
the scientific computing community due to its speed, ease of
use and powerful features.

Since then, Julia has undergone several major releases, with
new features and improvements added in each release. Version
0.3 was released in August 2014, version 0.6 in June 2017, and
both Julia 0.7 and version 1.0 on 8 August 2018. Version 1.0
marked a major milestone for Julia as it was the first stable and
production-ready release of the language.

Since the release of version 1.0, Julia has continued to evolve
rapidly, with frequent releases of new versions. Versions 1.1, 1.2,
1.3 and 1.4 were released in 2019, while versions 1.5 and 1.6 were
released in 2020. Version 1.7 is the latest stable release as of
2022, while versions 1.8 and 1.9 are currently in beta. Julia 2.0
does not yet have a planned release date.

Each release of Julia has introduced new features and
improvements to the language, such as improved performance,
new syntax, and expanded support for libraries and tools.
Julia’s development is guided by a strong focus on community
involvement, with contributions from a large and active
community of users and developers. Julia is open-source
software and is licensed under the MIT License, which allows for
free and unrestricted use and distribution of the language.

1.2. Julia Key Features
Julia’s design is optimised for numerical and scientific
computing, which makes it popular in research and academia. Its
features can be summarised as follows:

• �Fast: Julia was designed from the beginning for high
performance. Julia programs compile to efficient native code
for multiple platforms via low level virtual machine (LLVM).

• �Dynamic: Julia is dynamically typed, feels like a scripting
language, and has good support for interactive use.

• �Reproducible: Reproducible environments make it possible
to recreate the same Julia environment every time, across
platforms, with pre-built binaries.

• �Composable: Julia uses multiple dispatch as a paradigm,
making it easy to express many object-oriented and functional
programming patterns.

• �General: Julia provides asynchronous I/O, metaprogramming,
debugging, logging, profiling, a package manager, and more.
One can build entire applications and microservices in Julia.

• �Open source: Julia is an open-source project, with over 1,000
contributors. It is made available under the MIT License. The
source code is available on GitHub.

Julia is compiled to LLVM, a compiler infrastructure that
provides high-performance code generation for a wide range of
platforms. LLVM was originally developed as part of the LLVM
project, which aimed to provide a flexible and reusable compiler
framework for programming languages including Julia, Rust and
Swift. In Julia’s case, LLVM is used to compile Julia programs to
efficient native code that can run on a wide range of platforms.

For more information on Julia’s features, here are some helpful
links:

• �The Julia documentation (https://docs.julialang.org/en/v1/)
provides a comprehensive guide to Julia’s syntax, features and
package ecosystem.

• �The Julia Language: A Concise Introduction (https://arxiv.org/
abs/2008.01451) is a paper that introduces Julia’s design and
features.

• �The Unreasonable Effectiveness of Multiple Dispatch (https://
www.youtube.com/watch?v=kc9HwsxE1OY) is a talk by Stefan
Karpinski that explains the benefits of Julia’s multiple dispatch
system.

Julia is a high-performance, dynamic programming language
that combines the ease of use of scripting languages with
the speed of compiled languages. One of its key features is
its speed, which is achieved through just-in-time compilation
and support for multi-threading and distributed computing.
Another is its dynamic type system, which allows for flexible
and expressive programming. Julia also supports multiple
dispatch, which makes it easy to express many object-
oriented and functional programming patterns. Other features
include metaprogramming, asynchronous I/O, reproducible
environments, and support for machine learning and data
analysis through packages such as Flux.jl and DataFrames.
jl. Julia is used by over 10,000 companies and over 1,500
universities and has been applied in fields including machine
learning, data science, scientific computing, finance, robotics
and materials science.1,2,3,4,5

1	 Julia Computing Raises $24M in Series A, Former Snowflake CEO Bob Muglia Joins Board
2	 The Rise of the Julia Programming Language — Is it Worth Learning in 2022? | DataCamp
3	 Why We Use Julia, 10 Years Later
4	 The Julia Programming Language: The History and Uses
5	 What is Julia Used For? 10 Applications of Julia Programming | DataCamp

https://docs.julialang.org/en/v1/
https://arxiv.org/abs/2008.01451
https://arxiv.org/abs/2008.01451
https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.prnewswire.com/news-releases/julia-computing-raises-24m-in-series-a-former-snowflake-ceo-bob-muglia-joins-board-884269978.html
https://www.datacamp.com/blog/the-rise-of-julia-is-it-worth-learning-in-2022
https://julialang.org/blog/2022/02/10years/
https://leftronic.com/blog/julia-programming-language/
https://www.datacamp.com/blog/what-is-julia-used-for

2 | PHUSE Deliverables

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

2.	Getting Started with Julia
To get started with Julia, download the latest stable release of Julia from the official website (https://julialang.org/downloads/). Julia
has a simple and intuitive syntax that is easy to learn for users familiar with programming languages such as Python or MATLAB. Julia’s
package manager, Pkg, makes it easy to install and manage packages, which are libraries of code that extend Julia’s functionality.

2.1.	Julia Installation Steps
Here are the main steps for installing Julia and Jupyter:

Step 1: Download
and Install Julia

Step 2: Open the
Julia Command-Line

Step 3: Add Julia to
Jupyter Notebook

https://julialang.org/downloads/

3 | PHUSE Deliverables

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

Step 4: Download and
Install Anaconda and Products

Step 5: Create a
New Notebook

Step 6: Write Your Code

A more recent alternative to Jupyter Notebook is Quarto. See https://quarto.org/. This is especially useful for analysis and reporting
and in general for publishing reproducible, production-quality articles, presentations, websites, blog posts and books in HTML, PDF, MS
Word, ePub, and more.

https://quarto.org/

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

4 | PHUSE Deliverables

2.2.	 Recommended Packages
Some recommended packages for high-performance computing include:

• �LinearAlgebra: provides a wide range of matrix and vector operations, including eigenvalue decomposition and singular value
decomposition. Here are some examples

• �Statistics: provides statistical functions for data analysis and modelling, including probability distributions, hypothesis testing and
regression analysis. This package is built into Julia, so no additional installation is required. Here are some example usages:

• �Distributed: provides support for distributed computing, allowing Julia code to run on multiple processors or nodes.

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

5 | PHUSE Deliverables

• �CUDA (Compute Unified Device Architecture): provides support for GPU computing using the CUDA programming model.

CUDA is a parallel computing platform and application programming interface (API) developed by NVIDIA that allows developers to
harness the power of NVIDIA GPUs for high-performance computing tasks. CUDA provides a C/C++-like language for programming
NVIDIA GPUs, as well as a set of libraries and tools for optimising and debugging GPU code.

The power of CUDA comes from the massively parallel architecture of NVIDIA GPUs. While CPUs are designed to perform a small
number of tasks quickly and efficiently, GPUs are designed to perform a large number of simpler tasks in parallel. This makes GPUs well
suited for high-performance computing tasks such as scientific simulations, machine learning and data processing.

By using CUDA, developers can write code that runs on the GPU in parallel, taking advantage of the many cores available on modern
GPUs. This can lead to significant speed-ups compared to running the same code on a CPU. For example, deep learning algorithms that
might take days or weeks to train on a CPU can be trained in hours, or even minutes, on a GPU using CUDA.

In Julia, the CUDA.jl package provides support for using CUDA in Julia code. With CUDA.jl, developers can write GPU-accelerated code
in Julia using familiar syntax and idioms, while still taking advantage of the power of CUDA. This makes it easy for Julia developers to
harness the power of NVIDIA GPUs for high-performance computing tasks.

Other useful packages for data analysis include:

• �DataFrames: This package provides a set of tools for working with tabular data in Julia. Its design and functionality are similar to those
of pandas (in Python) and R.

• �Distributions: This package provides a large collection of probabilistic distributions and related functions.
• �MixedModels: This package defines linear mixed models (LinearMixedModel) and generalised linear mixed models.
• �GLM: This package is for linear and generalised linear models.
• �MultivariateStats: This package is for multivariate statistics and data analysis (e.g. PCA).
• �Gadfly: This package is a system for plotting and visualisation written in Julia and is based largely on ggplot2 for R and the grammar of

graphics.
• �JuliaHealth: A set of Julia packages for use in medicine, healthcare, public health and biomedical research.
• �MLJ (Machine Learning in Julia): This is a toolbox written in Julia that provides a common interface and meta-algorithms for selecting,

tuning, evaluating, composing and comparing about 200 machine learning models written in Julia and other languages.

There are more packages for very common statistical usages, such as Random and others which we could not list and discuss here.

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

6 | PHUSE Deliverables

3.	Current Real-World Use Cases
Julia is increasingly being used in real-world applications. It is
currently one of the 12 languages to know for data science,
along with Python, R, SQL, C/C++, Java, JavaScript, Go, Scala,
Swift, MATLAB and SAS. Julia6[1] is fast and flexible, and this
has made it a go-to language for processing big data. Let’s look
at some general use cases and then some specific use cases
within life science.

3.1.	 Real-World Use Cases in General
Julia is becoming an increasingly popular choice for scientific
computing and data analysis due to its speed, ease of use and
powerful features. Here are some real-world use cases that
highlight the capabilities of Julia in various fields:

• �Machine Learning: Julia’s speed and flexibility make it well
suited for developing machine learning models. For example,
the Flux.jl package (https://fluxml.ai/) provides a suite of tools
for deep learning and other machine learning tasks in Julia.
Julia has also been used for developing models for natural
language processing, image recognition and other applications.
You can see examples of Julia in data science for machine
learning, data visualisation and data manipulation (https://
juliadatascience.io/).

• �Finance: Julia’s speed and support for distributed computing
make it well suited for financial modelling and data analysis.
For example, the QuantEcon.jl package (https://quantecon.
org/quantecon-jl/) provides a suite of tools for quantitative
economics and finance in Julia. Julia has also been used for
developing trading algorithms, risk management models,
portfolio optimisation and trading strategies (https://
juliapackages.com/p/strategems).

• �Robotics: Julia has been used for developing control systems
for robots and other autonomous systems. For example, the
RobotOS.jl package (https://github.com/jdlangs/RobotOS.jl)
provides a set of tools for robot control and simulation in Julia.
Julia has also been used for developing reinforcement learning
models for robotic control.

• �Aerospace Engineering: Julia’s speed and support for
distributed computing make it well suited for large-scale
simulations in aerospace engineering. For example, the
ModelingToolkit.jl package (https://mtk.sciml.ai/stable/)
provides a set of tools for modelling and simulating aerospace
systems in Julia. Julia has also been used for developing
control systems for drones and other unmanned aerial vehicles.
NASA’s Jet Propulsion Laboratory uses Julia to simulate
spacecraft trajectories and optimise mission designs (https://
www.youtube.com/watch?v=iJr_lU7_7Go).

• �Materials Science: Julia has been used for modelling and
simulating materials properties and behaviour. For example,
the MaterialsProject.jl package (https://github.com/JuliaFEM/
Materials.jl) provides a suite of tools for materials research
and analysis in Julia. Julia has also been used for developing
machine learning models for predicting materials properties.

• �Scientific Computing: Julia is used in scientific computing
for numerical simulations, computational physics and
computational chemistry (https://docs.juliahub.com/General/
JuliaDB/stable/). Julia’s support for distributed computing
and parallelism make it well suited for high-performance data
processing tasks such as real-time data analytics and large-
scale data processing. For example, the JuliaDB.jl package
(https://github.com/JuliaData/JuliaDB.jl) provides a fast and
flexible database system for Julia.

• �Scientific Simulations: Julia is a popular choice for scientific
simulations such as computational fluid dynamics, astrophysics
and quantum mechanics. For example, the QuantumOptics.jl
package (https://qojulia.org/) provides a toolkit for simulating
quantum optics systems using Julia.

These are just a few examples of the many ways that Julia is
being used in scientific computing and data analysis. Its speed,
flexibility and ease of use make it a powerful tool for tackling a
wide range of computational tasks.

3.2. Real-World Use Cases in Life Science
Julia is becoming an increasingly popular choice for scientific
computing due to its speed, ease of use and powerful
features. Here are some real-world use cases that highlight the
capabilities of Julia in life science:

• �Modeling Infectious Diseases: Julia has been used to model
the spread of infectious diseases, such as COVID-19. For
example, the COVIDAnalytics.jl package (https://blog.jcharistech.
com/2020/04/20/data-analysis-of-covid19-using-julia/) provides
a toolkit for analysing COVID-19 data using Julia. Researchers
have also used Julia to model the transmission dynamics of other
infectious diseases, such as Ebola.

• �Genomics: Julia is well suited for genomics data analysis
due to its speed and support for distributed computing. For
example, the BioJulia project (https://biojulia.net/) provides a
suite of packages for genomics data analysis in Julia. Julia has
also been used for genome assembly and annotation, as well
as for analysing large-scale genomic datasets.

• �Drug Discovery: Julia’s speed and flexibility make it well
suited for drug discovery tasks, such as virtual screening and
molecular docking. For example, the MolSim.jl package (https://
juliamolsim.github.io/) provides a suite of tools for molecular
simulation and drug discovery in Julia. Julia has also been
used to develop machine learning models for predicting drug
efficacy and toxicity.

• �Neuroscience: Julia has been used for modelling neural
systems, analysing neuroimaging data and developing machine
learning models for brain-computer interfaces. For example,
the NeuroJulia project (https://github.com/JuliaNeuroscience)
provides a collection of packages for neuroscience research
in Julia. Julia has also been used for developing deep learning
models for brain-inspired computing.

6	 12 Top Data Science Programming Languages 2023 | Built In

https://fluxml.ai/
https://juliadatascience.io/
https://juliadatascience.io/
https://quantecon.org/quantecon-jl/
https://quantecon.org/quantecon-jl/
https://juliapackages.com/p/strategems
https://juliapackages.com/p/strategems
https://juliapackages.com/p/strategems
https://github.com/jdlangs/RobotOS.jl
https://mtk.sciml.ai/stable/
https://www.youtube.com/watch?v=iJr_lU7_7Go
https://www.youtube.com/watch?v=iJr_lU7_7Go
https://github.com/JuliaFEM/Materials.jl
https://github.com/JuliaFEM/Materials.jl
https://docs.juliahub.com/General/JuliaDB/stable/
https://docs.juliahub.com/General/JuliaDB/stable/
https://github.com/JuliaData/JuliaDB.jl
https://github.com/JuliaData/JuliaDB.jl
https://qojulia.org/
https://blog.jcharistech.com/2020/04/20/data-analysis-of-covid19-using-julia/
https://blog.jcharistech.com/2020/04/20/data-analysis-of-covid19-using-julia/
https://biojulia.net/
https://juliamolsim.github.io/
https://juliamolsim.github.io/
https://github.com/JuliaNeuroscience
https://www.prnewswire.com/news-releases/julia-computing-raises-24m-in-series-a-former-snowflake-ceo-bob-muglia-joins-board-884269978.html
https://builtin.com/data-science/data-science-programming-languages

7 | PHUSE Deliverables

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

These are just a few examples of the many ways that Julia is
being used in life science research. Its speed, flexibility and
ease of use make it a powerful tool for tackling a wide range of
scientific computing tasks. There are several companies that
have started using Julia to perform various tasks. Here are some
examples:

• �Pfizer: Pfizer used Julia to accelerate the simulation of
treatments for heart failure by 175 times using models running
in Julia.7 [2]

• �AstraZeneca: AstraZeneca uses Bayesian neural networks with
the Flux.jl and Turing.jl Julia packages to predict drug toxicity.
[2]

• �Julia Computing: Julia Computing is a company founded by the
creators of Julia that offers commercial support and services
for Julia. Julia Computing has raised $24 million in Series A
funding and is used by over 10,000 companies and over 1,500
universities. 8 [3]

The popularity and adoption of Julia in industry and academia
continues to grow, with companies and organisations of all sizes
recognising the benefits of using Julia for high-performance
computing tasks. 9, 10, 11 [4][5][6]

4.	�Potential Tasks for High-Performance
Computing

Julia’s speed, flexibility and ease of use make it well suited for a
wide range of high-performance computing tasks in life science.
Here are some potential case studies for using Julia in life
science:

• �Genome Assembly: Julia’s support for distributed computing
and parallel processing makes it well suited for genome
assembly tasks, which involve assembling long DNA sequences
from shorter reads. With Julia, researchers can efficiently
process and analyse large-scale genomics datasets to
generate accurate genome assemblies.

• �Protein Folding: Protein folding is a complex computational
problem that involves predicting the three-dimensional
structure of a protein based on its amino acid sequence. Julia’s
speed and support for machine learning make it well suited for
developing accurate and efficient models for protein folding,
which could have implications for drug discovery and other
areas of research.

• �Disease Diagnosis: Julia’s speed and support for machine
learning make it well suited for developing models for disease
diagnosis based on patient data, such as medical imaging or
genomic data. With Julia, researchers can efficiently analyse
and process large-scale datasets to develop accurate and
reliable models for disease diagnosis.

• �Drug Discovery: Julia’s speed and flexibility make it well
suited for virtual screening and molecular docking tasks in
drug discovery, which involves screening large databases of
compounds to identify potential drug candidates. With Julia,

7	 Why We Use Julia, 10 Years Later
8	 Julia Computing Raises $24M in Series A, Former Snowflake CEO Bob Muglia Joins Board
9	 Why We Use Julia, 10 Years Later
10	 The Julia Programming Language: The History and Uses
11	 What is Julia Used For? 10 Applications of Julia Programming | DataCamp

researchers can efficiently screen large-scale databases and
develop accurate and efficient models for predicting drug
efficacy and toxicity.

• �Neuroscience: Julia’s support for distributed computing and
machine learning makes it well suited for developing models
of neural systems and analysing large-scale neuroimaging
datasets. With Julia, researchers can efficiently process and
analyse large-scale neuroimaging datasets to develop accurate
models of neural systems, which could have implications for
understanding brain function and developing new therapies for
neurological disorders.

These are just a few examples of the many potential case
studies for using Julia in life science research. Its speed,
flexibility and ease of use make it a powerful tool for tackling a
wide range of computational tasks in life science.

5.	�Recommended Julia Readings and
References

For further exploration of Julia and high-performance computing,
here are some recommended readings and references:

• �The Julia Documentation (https://docs.julialang.org/en/v1/)
provides a comprehensive guide to Julia’s syntax, features and
package ecosystem.

• �JuliaAcademy (https://juliaacademy.com/) provides online
courses and tutorials on Julia for beginners and advanced
users.

• �The JuliaCon Conference (https://juliacon.org/) is an annual
conference that showcases the latest developments and
applications of Julia.

• �“Julia: A Fresh Approach to Numerical Computing” (https://
arxiv.org/abs/1411.1607) is a paper by the creators of Julia that
provides an overview of the language’s design and features.

• �“The Unreasonable Effectiveness of Multiple Dispatch” (https://
www.youtube.com/watch?v=kc9HwsxE1OY) is a talk by Stefan
Karpinski that explains the benefits of Julia’s multiple dispatch
system.

• �The Julia Programming Language Channel on YouTube: https://
www.youtube.com/c/TheJuliaLanguage.

6.	Conclusion
In conclusion, Julia is a powerful and versatile programming
language that offers many features and benefits for high-
performance computing. With its fast compilation, dynamic
typing, multiple dispatch and built-in support for parallelism,
Julia is becoming an increasingly popular choice for scientific
simulations, machine learning and high-performance data
processing. This review paper introduces Julia’s features and
benefits for high-performance computing, along with practical
guidance on getting started with Julia, real-world use cases,
potential case studies, and recommended readings and
references.

https://julialang.org/blog/2022/02/10years/
https://www.prnewswire.com/news-releases/julia-computing-raises-24m-in-series-a-former-snowflake-ceo-bob-muglia-joins-board-884269978.html
https://julialang.org/blog/2022/02/10years/
https://leftronic.com/blog/julia-programming-language/
https://www.datacamp.com/blog/what-is-julia-used-for
https://docs.julialang.org/en/v1/
https://juliaacademy.com/
https://juliacon.org/
https://arxiv.org/abs/1411.1607
https://arxiv.org/abs/1411.1607
https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.youtube.com/c/TheJuliaLanguage
https://www.youtube.com/c/TheJuliaLanguage

8 | PHUSE Deliverables

Project: Julia Initiative for High Performance Computing  Title: Julia for High-Performance Computing

Version ID: WP-076 Working Group: Data Visualisation and Open Source Technology Date: 2023-October-09

7. References
[1] “Julia’s power has especially made it a go-to option for big data analysis in the private sector and scientific research. The language
can be found in noteworthy projects for climate modelling, weather forecasting and astronomical surveys, among others. Its wide-ranging
interoperability — compatible with everything from Python to old-school Fortran — and its continued boost from MIT, also make Julia a
likely long-term contender.”
12 Top Data Science Programming Languages to Know | Built In https://www.datacamp.com/blog/the-rise-of-julia-is-it-worth-learning-
in-2022

[2] “It’s not just aerospace engineering—pharmaceutical companies are developing with Julia as well. Pfizer accelerated the simulation
of treatments for heart failure 175 times using models running in Julia. AstraZeneca uses Bayesian neural networks with the Flux.jl and
Turing.jl Julia packages to predict drug toxicity.”
https://juliahub.com/case-studies/astra-zeneca/

[3] “Julia solves the ‘two-language problem’ by providing high performance and ease of use in a single language. Julia is used by over
10,000 companies and over 1,500 universities. Julia’s creators won...”
https://www.prnewswire.com/news-releases/julia-computing-raises-24m-in-series-a-former-snowflake-ceo-bob-muglia-joins-
board-884269978.html

[4] “It is taught at hundreds of universities and entire companies are being formed that build their software stacks on Julia. From
personalised medicine to climate modelling, novel materials and even space mission planning — everywhere you look, the Julia community
is pushing the boundaries of human discovery.”
https://julialang.org/blog/2022/02/10years/

[5] “The Julia language was first introduced in 2012 by a team of developers led by Jeff Bezanson, Stefan Karpinski, Viral B. Shah and Alan
Edelman. Since its inception, Julia has been used in various fields, including machine learning, data science and scientific computing.”
https://leftronic.com/blog/julia-programming-language/

[6] “One of the popular packages is JuliaFin, which specialises in areas such as asset management, risk management, algorithmic trading,
backtesting, and other areas of computational finance, including modelling financial contracts.” 9. Robotics Roboticists from MIT use Julia
to program robots.”
https://www.datacamp.com/blog/what-is-julia-used-for

[7] Roesch, E., Greener, J.G., MacLean, A.L., et al. (2023). Julia for biologists. Nat Methods 20, 655–664. https://doi.org/10.1038/s41592-
023-01832-z

[8] Gao, K., Mei, G., Piccialli, F., Cuomo, S., Tu, J., & Huo, Z. (2020). Julia language in machine learning: Algorithms, applications, and open
issues. Computer Science Review 37, 100254. 10.1016/j.cosrev.2020.100254

8. Acknowledgements
This white paper was developed by the Julia Initiative for High-Performance Computing project in the Data Visualisation & Open Source
Technology (DVOST) Working Group. Thanks to the following key members, who participated in the initial discussion and in drafting this
white paper:

• �Hanming Tu (htu@ashandainc.com)
• �Melvin Munsaka (melvin.munsaka@abbvie.com)
• �Chris Hurley (churley@mmsholdings.com)
• �Patrick Hannon (phannon@mmsholdings.com)
• �Jeff Mills (millsjf@ucmail.uc.edu)

https://builtin.com/data-science/data-science-programming-languages
https://builtin.com/data-science/data-science-programming-languages
https://juliahub.com/case-studies/astra-zeneca/
https://www.prnewswire.com/news-releases/julia-computing-raises-24m-in-series-a-former-snowflake-ceo-bob-muglia-joins-board-884269978.html
https://www.prnewswire.com/news-releases/julia-computing-raises-24m-in-series-a-former-snowflake-ceo-bob-muglia-joins-board-884269978.html
https://julialang.org/blog/2022/02/10years/
https://leftronic.com/blog/julia-programming-language/
https://www.datacamp.com/blog/what-is-julia-used-for
https://doi.org/10.1038/s41592-023-01832-z

https://doi.org/10.1038/s41592-023-01832-z

mailto:htu%40ashandainc.com?subject=
mailto:melvin.munsaka%40abbvie.com?subject=
mailto:churley%40mmsholdings.com?subject=
mailto:phannon%40mmsholdings.com?subject=
mailto:millsjf%40ucmail.uc.edu?subject=

