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ABSTRACT  
As the field of data science continues to evolve, many SAS programmers are transitioning to R, attracted 

by its versatility, open-source advantages, and growing prominence in the pharmaceutical industry. 

However, this shift from SAS’s procedural programming approach to R’s functional paradigm introduces 

unique challenges, particularly in the creation and debugging of user-defined functions. 

While R functions and SAS macros both serve as essential tools for modularizing and automating tasks 

within their respective programming environments, they differ substantially in their structure, execution, 

and underlying concepts.  

 INTRODUCTION  
The knowledge and tools required to create and debug user-defined R functions effectively are essential 

for efficient programming in R. Many SAS programmers face a significant gap between how SAS macros 

are written and how R functions operate. 

This paper bridges that gap by providing a detailed comparison of SAS macros and R functions, exploring 

R’s robust debugging tools. By equipping programmers with these insights, the paper aims to streamline 

the transition from SAS to R and enhance overall programming efficiency. 

When transitioning from SAS to R, it is crucial to shift thinking from text substitution to function-based 

programming. SAS macros primarily operate through text substitution, dynamically generating and 

inserting code without executing computations directly. They rely on macro variables and text-based logic, 

often modifying global variables. In contrast, R functions follow an object-oriented approach, where 

computations are executed within functions that return structured objects. This design allows for better 

encapsulation, ensuring that functions return values explicitly, which can then be assigned, manipulated, 

and reused in further operations. This paper will provide a detailed explanation of how functions are 

created, how values are passed to them, and how values are returned in R. 

 

Operational Environments in R and SAS 

In programming, an environment is a container that stores variable names (symbols) along with their 

associated values. It defines the context in which a program or function operates and determines how 

variables are resolved and accessed. This functionality differs significantly between R and SAS, making it 

a key concept for SAS programmers to understand when transitioning to writing functions in R. 

When a function is executed in R, a new environment is created to store variables that are local to that 

function. This means that variables or data created within the function are not directly accessible outside 

of it and require explicit steps to be accessed. Similarly, the function does not have access to external 

inputs unless they are explicitly provided. This design prevents unintentional modifications to global 

variables, promotes modularity by isolating variable scope, and simplifies debugging by containing 

changes within the function's environment. 



 SAS, in contrast, does not employ the concept of hierarchical environments like R. SAS macros operate 

in a global environment, where variables created within a macro can overwrite global variables or be 

inadvertently modified. The absence of a strict environment hierarchy in SAS simplifies the functionality of 

macros, as users do not need to be overly cautious about the availability or scope of the variables 

created. This simplicity can make SAS macros more straightforward to use, though it can carry potential 

risks related to variable conflicts and unintended modifications. This fundamental difference requires SAS 

programmers to be more mindful of variable scope when transitioning to R. The concept of scoping will be 

explored further in the paper, providing a deeper understanding of how R manages variable 

environments. 

 

Basic Syntax of R Function  

Defining a function in R is straightforward and consists of the following components as shown below: 

 

• Function Name: Serves as the identifier for the function. 

• Arguments: A list of inputs enclosed within the “function” 

keyword, specifying the data the function will work with. 

• Body: The block of code that performs the desired 

operations or computations. 

• Return Value: The output generated by the function, 

explicitly defined using the return() function or implicitly as 

the last evaluated expression. 

 

Understanding Scoping rules in R 

Understanding scoping rules is essential for effectively writing and using R functions. In R, scoping 

determines how variables are found and accessed within different environments, similar to how SAS 

differentiates between macro variables (global scope) and DATA step variables (local scope). R follows 

lexical (static) scoping, meaning a function first looks for a variable within its own local environment before 

searching in its parent environment, and finally in the global environment if necessary.  

This process mirrors SAS’s approach, where macro variables persist globally, while variables created 

within a DATA step or procedure exist only within that specific execution block. However, unlike SAS 

macro variables, which reside in a single global symbol table, R functions operate within isolated 

environments, ensuring that variables remain contained within their respective functions. 

In simple terms, this means that SAS macros expose all intermediate values globally, making them 

accessible outside the macro call. In contrast, R functions keep everything contained within the function, 

so intermediate calculations or variables inside the function are not available outside of it. 



For example, in the SAS macro below, the macro variable x is stored globally, meaning it remains 

accessible even after the macro has executed.

 

In contrast, R functions do not store intermediate variables globally, as illustrated in the example below. 

Unlike SAS macros, which store variables globally by default, R functions follow lexical scoping, meaning 

that variables exist only within the function unless explicitly returned. 

 

 

Hierarchical Environment Search  

When a function is executed, it searches for variables in a specific order: 

1. Local Environment – First, the function looks for the variable inside its own environment. 

2. Parent Environment – If not found, it looks in the environment where the function was defined. 

3. Global Environment – If still not found, it searches in the global environment. 

 

 

 

Note that in the example above, the function creates its own local x and returns it. The global x remains 

unchanged with a value of 10 because functions in R do not modify global variables by default. Instead, 

variables declared inside a function exist only within that function’s local environment. 

 

 



Nested Function Scoping 

Let’s look at an example of a nested function to better understand the concept of Lexical Scoping as 

shown in the example below.  

 

In the example function above, inner_function() does not have its own local x, so it follows lexical scoping 

rules and searches for x in its parent environment (outer_function()) before checking the global 

environment. Since x <- 20 exists inside outer_function(), R finds and returns this value instead of the 

global x = 10. This behavior highlights how R functions inherit variable values from their defining 

environment, ensuring that nested functions can access parent function variables without modifying 

global variables. 

Passing Arguments in R Functions   

Positional and Named Arguments: In R, arguments can be passed to a function based on their order in 

the function definition. This is similar to how SAS macros pass parameters positionally, as demonstrated 

in the example below. 

The subtract_numbers function in the example below has two parameters, x and y, where x has a default 

value of 10. 

 

Note that when explicitly naming arguments while calling a function, we can pass them in any order, like 

how parameters are handled in SAS macros, as demonstrated in the result2 example. Additionally, if no 

value is assigned to x, it takes the default value of 10, as shown in the result3 example. 



Returning Values from an R Function 

While Passing arguments to R functions is like passing arguments in SAS macros, the mechanisms for 
retrieving results differ significantly due to how environments are managed in R. As mentioned earlier, 
each function in R operates within its own isolated environment, and these environments do not interact 
directly with one another. This design influences how results are handled and accessed. 

 Implicit Return 

In R, the value of the last evaluated expression within a function is returned automatically, eliminating the 
need for an explicit return() statement. This behavior is illustrated in the example below.  

 

Since a + b is the last evaluated expression, R automatically returns its result without requiring return() 
statement. It is important to note that while the last evaluated expression in a function is automatically 
returned, you must explicitly assign it if you intend to store or use its value later, as demonstrated in the 
example below. 

 

Explicit Return 

Although return() is not always necessary, using it can improve clarity, especially for complex functions 
where multiple operations are performed. An explicit return() statement ensures that the function's output 
is clearly defined. Below is an example of how an explicit return works: 

  

 

 

 

 



Returning Multiple Values with a List 

In R, lists allow functions to return multiple values of different types as a single, unified object. This 
approach provides flexibility for organizing and structuring outputs, making it easy to handle diverse data 
types such as numbers, characters, and data frames within a single function. 

Below is an example of an R function that calculates basic statistics using the calculate_stats() function 
and returns multiple values as a structured list: 

 

 

Returning Data Frames:  

In R, data frames (analogous to SAS datasets) can be returned directly from functions, making R 
particularly effective for data manipulation tasks. This methodology of returning data frames is one of the 
most used approaches in data programming. 

This concept is illustrated below with a function that creates and returns a data frame with three variables: 
ID, Name, and Score. This method is commonly used in data manipulation, reporting, and analysis in R.   

 

 



Conditional Returns: R functions can return different types of outputs based on specified conditions, 
making them highly flexible in handling varying input scenarios and logic paths. This feature allows 
functions to dynamically adapt their output based on user input, data properties, or logical evaluations. 

 

The function evaluate_score() accepts a numeric input (score).  Based on the value of score, it returns 
different categorical outputs: 

• "Excellent" for scores 90 and above. 

• "Good" for scores between 75 and 89. 

• "Pass" for scores between 50 and 74. 

• "Fail" for scores below 50. 

The return() function is explicitly used to exit the function and return the appropriate result 

 Function Debugging Techniques in R 

Debugging is an essential skill for identifying and fixing issues in functions. R provides several tools and 

techniques to assist in this process. However, debugging in R can sometimes feel more tedious 

compared to SAS, which offers a highly detailed log that simplifies the process by providing clear and 

comprehensive information about errors and execution steps. 

In R, while the debugging tools are powerful, they often require more manual inspection and interactivity 

to trace issues effectively. An added challenge with R functions is that they operate within their own 

environments, meaning users must make additional effort to access intermediate information. In contrast, 

SAS macros function in the same global environment, allowing users to access intermediate data easily, 

which further simplifies the debugging process in SAS. 

The simplest way to debug a function in R is by inserting print() or cat() statements to inspect intermediate 

values, as shown in the example below. This approach is useful for quickly checking intermediate results 

and validating the flow of logic within the function.  

 



Example: Using print() for Debugging 

 

Example: Using cat() for Debugging 

 

Interactive Debugging Tools 

traceback(): Use traceback() after an error occurs to see the sequence of function calls leading to the 

error. This is particularly useful in understanding where an error originates in a nested call. 

browser(): The browser() function pauses execution at a specific point in your code, allowing you to 

inspect variables and interact with the function environment. This feature is particularly useful for step-by-

step debugging, as it enables you to examine the current state of variables and the function’s 

environment during runtime. It is an especially valuable tool for accessing the local function environment, 

providing deeper insights into the function's behavior and aiding in efficient debugging. 

 

 

 

 

 

 

 



debug() and debugonce() 

These functions allow for step-through debugging of an entire function. When a function is marked for 

debugging using debug() or debugonce(), R enters debug mode when the function is called, enabling you 

to step through each line of code interactively to inspect its execution and identify issues. 

  

 

 

 

 

 

CONCLUSION 
By understanding the differences between SAS macros and R functions, SAS programmers can 

seamlessly transition to R’s functional programming paradigm. Mastering R’s debugging tools not only 

facilitates the identification and resolution of issues but also ensures the creation of robust, efficient, and 

error-free code. As R continues to gain widespread adoption in the pharmaceutical industry, these skills 

will be indispensable for data analysts and programmers aiming to excel in clinical data analysis and 

remain competitive in the evolving landscape of data science. 
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