
Paper SM07

Bridging the Gap: Creating and Debugging User-Defined R Functions
from a SAS Programmer's Perspective

Hrideep Antony, Eli Lilly & Company, USA

ABSTRACT
As the field of data science continues to evolve, many SAS programmers are transitioning to R, attracted

by its versatility, open-source advantages, and growing prominence in the pharmaceutical industry.

However, this shift from SAS’s procedural programming approach to R’s functional paradigm introduces

unique challenges, particularly in the creation and debugging of user-defined functions.

While R functions and SAS macros both serve as essential tools for modularizing and automating tasks

within their respective programming environments, they differ substantially in their structure, execution,

and underlying concepts.

 INTRODUCTION
The knowledge and tools required to create and debug user-defined R functions effectively are essential

for efficient programming in R. Many SAS programmers face a significant gap between how SAS macros

are written and how R functions operate.

This paper bridges that gap by providing a detailed comparison of SAS macros and R functions, exploring

R’s robust debugging tools. By equipping programmers with these insights, the paper aims to streamline

the transition from SAS to R and enhance overall programming efficiency.

When transitioning from SAS to R, it is crucial to shift thinking from text substitution to function-based

programming. SAS macros primarily operate through text substitution, dynamically generating and

inserting code without executing computations directly. They rely on macro variables and text-based logic,

often modifying global variables. In contrast, R functions follow an object-oriented approach, where

computations are executed within functions that return structured objects. This design allows for better

encapsulation, ensuring that functions return values explicitly, which can then be assigned, manipulated,

and reused in further operations. This paper will provide a detailed explanation of how functions are

created, how values are passed to them, and how values are returned in R.

Operational Environments in R and SAS

In programming, an environment is a container that stores variable names (symbols) along with their

associated values. It defines the context in which a program or function operates and determines how

variables are resolved and accessed. This functionality differs significantly between R and SAS, making it

a key concept for SAS programmers to understand when transitioning to writing functions in R.

When a function is executed in R, a new environment is created to store variables that are local to that

function. This means that variables or data created within the function are not directly accessible outside

of it and require explicit steps to be accessed. Similarly, the function does not have access to external

inputs unless they are explicitly provided. This design prevents unintentional modifications to global

variables, promotes modularity by isolating variable scope, and simplifies debugging by containing

changes within the function's environment.

 SAS, in contrast, does not employ the concept of hierarchical environments like R. SAS macros operate

in a global environment, where variables created within a macro can overwrite global variables or be

inadvertently modified. The absence of a strict environment hierarchy in SAS simplifies the functionality of

macros, as users do not need to be overly cautious about the availability or scope of the variables

created. This simplicity can make SAS macros more straightforward to use, though it can carry potential

risks related to variable conflicts and unintended modifications. This fundamental difference requires SAS

programmers to be more mindful of variable scope when transitioning to R. The concept of scoping will be

explored further in the paper, providing a deeper understanding of how R manages variable

environments.

Basic Syntax of R Function

Defining a function in R is straightforward and consists of the following components as shown below:

• Function Name: Serves as the identifier for the function.

• Arguments: A list of inputs enclosed within the “function”

keyword, specifying the data the function will work with.

• Body: The block of code that performs the desired

operations or computations.

• Return Value: The output generated by the function,

explicitly defined using the return() function or implicitly as

the last evaluated expression.

Understanding Scoping rules in R

Understanding scoping rules is essential for effectively writing and using R functions. In R, scoping

determines how variables are found and accessed within different environments, similar to how SAS

differentiates between macro variables (global scope) and DATA step variables (local scope). R follows

lexical (static) scoping, meaning a function first looks for a variable within its own local environment before

searching in its parent environment, and finally in the global environment if necessary.

This process mirrors SAS’s approach, where macro variables persist globally, while variables created

within a DATA step or procedure exist only within that specific execution block. However, unlike SAS

macro variables, which reside in a single global symbol table, R functions operate within isolated

environments, ensuring that variables remain contained within their respective functions.

In simple terms, this means that SAS macros expose all intermediate values globally, making them

accessible outside the macro call. In contrast, R functions keep everything contained within the function,

so intermediate calculations or variables inside the function are not available outside of it.

For example, in the SAS macro below, the macro variable x is stored globally, meaning it remains

accessible even after the macro has executed.

In contrast, R functions do not store intermediate variables globally, as illustrated in the example below.

Unlike SAS macros, which store variables globally by default, R functions follow lexical scoping, meaning

that variables exist only within the function unless explicitly returned.

Hierarchical Environment Search

When a function is executed, it searches for variables in a specific order:

1. Local Environment – First, the function looks for the variable inside its own environment.

2. Parent Environment – If not found, it looks in the environment where the function was defined.

3. Global Environment – If still not found, it searches in the global environment.

Note that in the example above, the function creates its own local x and returns it. The global x remains

unchanged with a value of 10 because functions in R do not modify global variables by default. Instead,

variables declared inside a function exist only within that function’s local environment.

Nested Function Scoping

Let’s look at an example of a nested function to better understand the concept of Lexical Scoping as

shown in the example below.

In the example function above, inner_function() does not have its own local x, so it follows lexical scoping

rules and searches for x in its parent environment (outer_function()) before checking the global

environment. Since x <- 20 exists inside outer_function(), R finds and returns this value instead of the

global x = 10. This behavior highlights how R functions inherit variable values from their defining

environment, ensuring that nested functions can access parent function variables without modifying

global variables.

Passing Arguments in R Functions

Positional and Named Arguments: In R, arguments can be passed to a function based on their order in

the function definition. This is similar to how SAS macros pass parameters positionally, as demonstrated

in the example below.

The subtract_numbers function in the example below has two parameters, x and y, where x has a default

value of 10.

Note that when explicitly naming arguments while calling a function, we can pass them in any order, like

how parameters are handled in SAS macros, as demonstrated in the result2 example. Additionally, if no

value is assigned to x, it takes the default value of 10, as shown in the result3 example.

Returning Values from an R Function

While Passing arguments to R functions is like passing arguments in SAS macros, the mechanisms for
retrieving results differ significantly due to how environments are managed in R. As mentioned earlier,
each function in R operates within its own isolated environment, and these environments do not interact
directly with one another. This design influences how results are handled and accessed.

 Implicit Return

In R, the value of the last evaluated expression within a function is returned automatically, eliminating the
need for an explicit return() statement. This behavior is illustrated in the example below.

Since a + b is the last evaluated expression, R automatically returns its result without requiring return()
statement. It is important to note that while the last evaluated expression in a function is automatically
returned, you must explicitly assign it if you intend to store or use its value later, as demonstrated in the
example below.

Explicit Return

Although return() is not always necessary, using it can improve clarity, especially for complex functions
where multiple operations are performed. An explicit return() statement ensures that the function's output
is clearly defined. Below is an example of how an explicit return works:

Returning Multiple Values with a List

In R, lists allow functions to return multiple values of different types as a single, unified object. This
approach provides flexibility for organizing and structuring outputs, making it easy to handle diverse data
types such as numbers, characters, and data frames within a single function.

Below is an example of an R function that calculates basic statistics using the calculate_stats() function
and returns multiple values as a structured list:

Returning Data Frames:

In R, data frames (analogous to SAS datasets) can be returned directly from functions, making R
particularly effective for data manipulation tasks. This methodology of returning data frames is one of the
most used approaches in data programming.

This concept is illustrated below with a function that creates and returns a data frame with three variables:
ID, Name, and Score. This method is commonly used in data manipulation, reporting, and analysis in R.

Conditional Returns: R functions can return different types of outputs based on specified conditions,
making them highly flexible in handling varying input scenarios and logic paths. This feature allows
functions to dynamically adapt their output based on user input, data properties, or logical evaluations.

The function evaluate_score() accepts a numeric input (score). Based on the value of score, it returns
different categorical outputs:

• "Excellent" for scores 90 and above.

• "Good" for scores between 75 and 89.

• "Pass" for scores between 50 and 74.

• "Fail" for scores below 50.

The return() function is explicitly used to exit the function and return the appropriate result

 Function Debugging Techniques in R

Debugging is an essential skill for identifying and fixing issues in functions. R provides several tools and

techniques to assist in this process. However, debugging in R can sometimes feel more tedious

compared to SAS, which offers a highly detailed log that simplifies the process by providing clear and

comprehensive information about errors and execution steps.

In R, while the debugging tools are powerful, they often require more manual inspection and interactivity

to trace issues effectively. An added challenge with R functions is that they operate within their own

environments, meaning users must make additional effort to access intermediate information. In contrast,

SAS macros function in the same global environment, allowing users to access intermediate data easily,

which further simplifies the debugging process in SAS.

The simplest way to debug a function in R is by inserting print() or cat() statements to inspect intermediate

values, as shown in the example below. This approach is useful for quickly checking intermediate results

and validating the flow of logic within the function.

Example: Using print() for Debugging

Example: Using cat() for Debugging

Interactive Debugging Tools

traceback(): Use traceback() after an error occurs to see the sequence of function calls leading to the

error. This is particularly useful in understanding where an error originates in a nested call.

browser(): The browser() function pauses execution at a specific point in your code, allowing you to

inspect variables and interact with the function environment. This feature is particularly useful for step-by-

step debugging, as it enables you to examine the current state of variables and the function’s

environment during runtime. It is an especially valuable tool for accessing the local function environment,

providing deeper insights into the function's behavior and aiding in efficient debugging.

debug() and debugonce()

These functions allow for step-through debugging of an entire function. When a function is marked for

debugging using debug() or debugonce(), R enters debug mode when the function is called, enabling you

to step through each line of code interactively to inspect its execution and identify issues.

CONCLUSION
By understanding the differences between SAS macros and R functions, SAS programmers can

seamlessly transition to R’s functional programming paradigm. Mastering R’s debugging tools not only

facilitates the identification and resolution of issues but also ensures the creation of robust, efficient, and

error-free code. As R continues to gain widespread adoption in the pharmaceutical industry, these skills

will be indispensable for data analysts and programmers aiming to excel in clinical data analysis and

remain competitive in the evolving landscape of data science.

ACKNOWLEDGMENTS
I would like to express my sincere gratitude to my colleagues and management at Eli Lilly and Company

for their unwavering support throughout this journey. A special thank you to Scott Beattie for his

meticulous review and invaluable feedback, and to Wei Zhou for your exceptional guidance and

assistance—your contributions have been instrumental to the success of this work. I deeply appreciate

your encouragement and support.

8. References

For SAS programmers, it’s time to learn R! by Sookie Kong, Sanofi

Pharmasug-China-2023-AP104.pdf

Clinical Trial Data Analysis Using R and SAS" by Ding-Geng Chen and Karl E. Peace

 "Practical Data Science with R" by Nina Zumel and John Mount.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at

Hrideep Antony
Eli Lilly and Company
+1 (984)-301-3451

antony_hrideep@lilly.com | www.lilly.com

Brand and product names are trademarks of their respective companies.

https://www.lexjansen.com/pharmasug-cn/2023/AP/Pharmasug-China-2023-AP104.pdf
mailto:antony_hrideep@lilly.com
http://www.lilly.com/

