
 
 

1 

Paper ML05 

Enhancing Pharmaceutical Quality Assurance through Large 
Language Models: A Novel Approach to Intelligent Regulatory 

Monitoring 

 

Hangyu Liu, Biogen, Cambridge, MA, USA 

Yuka Moroishi, Biogen, Cambridge, MA, USA 

James Melican, Biogen, Cambridge, MA, USA 

Matthew Ryals, Cencora, Conshohocken, PA, USA  

Jake Gagnon, Biogen, Cambridge, MA, USA 

Haleh Valian, Biogen, Cambridge, MA, USA 
 

 

ABSTRACT 
 
This study introduces an innovative Generative AI framework to enhance regulatory compliance processes in the 

pharmaceutical industry. With the continuous evolution of FDA and EMA regulations, pharmaceutical companies 

often face the challenge of managing manual, error-prone workflows for updating internal documents, such as 

Standard Operating Procedures (SOPs). We propose a two-step AI-driven solution to streamline regulatory update 

management. The first step leverages semantic search to identify SOPs potentially impacted by new regulatory 

updates. The second step utilizes a Large Language Model framework, powered by GPT-4o, to perform detailed 

comparisons between the new regulations and identified SOPs, confirming their impact and pinpointing specific 

sections requiring updates. This automated approach aims to reduce manual effort, minimize the risk of oversight, 
and ensure timely alignment with regulatory changes. Our findings demonstrate the transformative potential of 

Generative AI in regulatory intelligence, providing a scalable and efficient solution to a critical industry challenge. 

Future research will focus on refining the model and implementing it in real-world settings to quantify its benefits in 

terms of time savings and compliance accuracy. 

 

INTRODUCTION 

The pharmaceutical industry operates within a complex and ever-shifting regulatory landscape, governed by stringent 

guidelines from agencies such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA). These regulatory frameworks dictate numerous aspects of drug development, manufacturing, distribution, and 

post-marketing surveillance. They are not static: as scientific knowledge evolves, public health priorities shift, and 

new technologies emerge, regulatory bodies respond by introducing novel guidelines or updating existing ones. As a 

result, maintaining organizational compliance is not simply a matter of establishing fixed procedures; it is an ongoing 

process of monitoring, interpreting, and integrating regulatory changes into internal documents, such as standard 

operating procedures (SOPs). 

 

Currently, the process of regulatory monitoring is heavily reliant on manual efforts and the expertise of subject matter 
experts (SMEs). Teams tasked with regulatory monitoring must meticulously review updates from regulatory 

agencies, interpret their implications, and determine how they apply to internal processes and documentation. This 

approach often involves combing through lengthy regulatory texts, relying on individual judgment to assess the 

relevance and impact of changes. While SMEs bring valuable knowledge and experience to this task, the process is 

inherently subjective and varies based on personal interpretation and expertise. Furthermore, the manual nature of 

this work makes it time-consuming, prone to human error, and challenging to scale as the volume and complexity of 

regulatory updates grow. This labor-intensive system places significant pressure on regulatory monitoring teams and 

creates vulnerabilities in maintaining consistent and timely alignment with regulatory requirements.  Figure 1 is an 

illustration of the current regulatory monitoring process:  
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Figure 1: Human-driven Regulatory Monitoring and Impact Assessment 

The challenges of the current manual approach are further compounded by the interconnected nature of 
pharmaceutical processes. A single regulatory update can ripple across multiple documents, workflows, and 

departments, requiring multiple teams to evaluate dependencies and ensure consistency throughout the organization. 

In practice, even minor oversights in this process can result in misalignment with regulatory requirements, exposing 

the organization to risks such as inspection findings, delays in product approvals, or reputational damage. As 

regulatory frameworks become more nuanced and the pharmaceutical industry increasingly embraces digital 

transformation, the limitations of manual monitoring and documentation alignment are becoming more apparent. 

 

To address these challenges, we have developed an AI-powered regulatory monitoring system that can automate 

and streamline the process. By leveraging advancements in natural language processing (NLP) and large language 

models (LLMs), we built a system that can analyze and comprehend regulatory updates, identify a list of internal 

documents that may be impacted, and flag discrepancies or omissions for review. This would not only reduce the 

reliance on manual interpretation and effort but also enhance the accuracy and consistency of regulatory monitoring 
processes.  Our ultimate goal is to empower regulatory monitoring teams to focus on strategic decision-making rather 

than routine document reviews, enabling faster adaptation to regulatory changes while minimizing the risk of non-

compliance. Our AI-driven solution represents a significant step forward in how the pharmaceutical industry 

approaches regulatory monitoring, offering a scalable, reliable, and efficient alternative to the traditional manual 

methods. 

 
Related Work in Regulatory Interpretation 

 
Some related works to our regulatory monitoring pipeline include: 1) using LLMs for regulatory intelligence of health 

guidance documents; 2) financial regulatory interpretation; 3) LLMs applied to compliance checks in the food safety 

industry; and 4) finding relevant regulatory requirements for given business processes.  We briefly summarize each of 

these related works below. 

 

First, Venkatraman (Venkatraman Balasubramanian, 2024) discusses the application of LLMs to produce regulatory 

intelligence from health authority regulations in the January 2024 issue of DIA global forum. His goal was to increase 

productivity in regulatory submissions by making compliance more efficient by utilizing LLMs to summarize new 
guidelines as well as using LLMs (GPT 3.5 Turbo) to “chat” with the guideline documents. With their benchmark data, 

77% of answers were categorized as highly accurate or close enough upon manual review, and the author suggests 

LLMs be used (to an extent) as a co-pilot not as a replacement for regulatory professionals. 

 

In addition to using LLMs for regulatory intelligence on health guidance documents, Cao et al (Cao & Feinstein, 2024) 

propose the use of LLMs  for financial regulatory documents. Specifically, they performed a case study in using LLMs 

to apply regulations from the ‘Minimum Capital Requirements for Market Risk’ section of the Basel III document to 

simulated bank assets holdings. Their framework included key components such as: document loading, prompt 

engineering, minimum capital requirements calculations, and pipeline assessment. Their assessment compared four 

LLMs and concluded that GPT-4 has the best overall performance. Additionally, they recommend detailed prompting, 

converting PDFs to images during document loading, and subdividing their objective into simpler objectives.     
 
Thirdly, Shabnam (Hassani, 2024) discusses the application of LLMs to food safety regulations. Specifically, she was 

interested in two objectives: classifying each provision in food safety regulations and checking that a particular data 

processing agreement is compliant with GDPR1 regulations. She proposes a hybrid approach combining LLM 

classification and keyword matching to achieve provision classification. As for compliance checking, she recommends 
content chunking and prompt construction as an input to a zero-shot LLM document comparison. Her experiments 

illustrated an 87% F-score on classification with BERT and an 81% accuracy for the compliance checking task with 

GPT-4.  

 

Lastly, Sai et al (Sai, Sadiq, Han, & Rinderle-Ma, 2024) are interested in the automated comparison of business 

processes with regulatory texts to reduce the burden on domain experts. Their objective was finding the most 

 
1 The General Data Protection Regulation (GDPR) is a European law that protects the privacy and security of 

personal data. It applies to how personal data is collected, stored, and used by companies and organizations. 
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relevant regulatory texts for a given business process and after identifying relevant regulations, they wish to identify 

which step of the process is impacted. To this aim, the authors compared four approaches (the expert goal standard, 

embedding based models, GPT-4, and a crowd sourcing option) on two case studies at three levels of process detail.  

In their benchmark study consisting of travel insurance claim processes and due diligence business processes for 

new banking customers, their recommendations depended on the anticipated process impact and frequency of 

regulatory changes. From their benchmark data, they make the following conclusions: embedding methods should be 
used with high process impact and high regulatory dynamics, GPT-4 should be used for low process impact with high 

regulatory dynamics, and expert analysis is necessary for high process impact and low regulatory dynamics. 

 
Related Works in Document Comparison 

 
Some previous work in document comparison include: 1) Retrieval-augmented generation (RAG) or LLMs, 2) 

composable graphs, 3) prompt decomposition, 4) ReACT agents, and 5) semantic search.  Below we provide a brief 

description of these approaches. 

 

One example of using RAG or LLM for document comparison is given by Narendra et al (Narendra, Shetty, & 

Ratnaparkhi, 2024) who used LLMs for legal document comparison to potentially improve efficiency in contract 

analysis. They had two objectives: 1) classifying legal hypotheses as entailment, contradiction, or not mentioned in a 

corpus of NDAs (ContractNLI) and providing the user the related evidence and 2) contract analysis of internal 

JPMorgan documents. For the 1st task, comparison of multiple LLMs illustrated that GPT-4 had a 70% F1 for 

contradictions, a 91% F1 for entailment, and a 93% precision for evidence identification. For the 2nd task, a RAG 

pipeline was applied to extract relevant chunks from a contract related to each template concept. From the extracted 
context, an LLM with detailed prompting classified each template concept for entailment in the contract document 

(plus reverse comparison). Overall, GPT-4 had an 96% accuracy on this task.  

 

The Composable Graph in LlamaIndex converts a large document into several subcomponents (LlamaIndex, 2023) 

(LlamaIndex, 2023). This approach utilizes a tree-based data structure, where nodes represent pieces of information 

of a document, allowing for efficient querying. Queries recursively traverse the graph, starting at the root index then to 

sub-indices, to find relevant nodes for retrieval. The graph structure of this approach allows for querying large 

documents and side-by-side comparisons of related documents. 

 
Prompt decomposition is a technique that breaks down a complex query into simpler components (Zhou, et al., 2022) 

(Dua, Gupta, Singh, & Gardner, 2022). The use of smaller and more focused queries simplifies the question, reduces 

ambiguity, and improves accuracy. It also allows the user to identify where the LLM makes an error in order to make 

adjustments to the prompt where necessary. This approach is especially useful when retrieving information from 

multiple sources as results from the multiple queries can be synthesized. The sub question query engine in 

LlamaIndex is one example of prompt decomposition (LlamaIndex, n.d.). It can be paired with a retriever to efficiently 

retrieve information from a document or multiple documents. Briefly, the question of interest is split into multiple sub-
questions that are processed through a query engine. These sub-questions can be answered in parallel or 

sequentially, if the result of one sub-question depends on the result of another. All answers to the sub-questions are 

then synthesized to answer the original question.  
  

The idea of a ReAct agent was first proposed in "ReAct: Synergizing Reasoning and Acting in Language Models” 

(Yao, et al., ReAct: Synergizing Reasoning and Acting in Language Models, 2023) (Yao, et al., n.d.) in a collaboration 

between Google Research and Princeton. The novel idea of ReAct is for a LLM to combine both reasoning and acting 

to improve its performance and to generate more interpretable responses compared to a standard LLM. Acting here 

refers to the LLM using tools such as web search, knowledge base search, or querying a database. The LLM’s action 

plan can be updated dynamically by the model as the model reasons about the user’s query. In contrast to standard 

LLMs, ReAct agents can utilize external information to gather up-to-date information to answer a user’s query which 

reduces the hallucination rate of the LLM. Although the original paper did not apply ReAct agents to the document 
comparison task, we will describe below how we applied a ReAct agent to the comparison of incoming regulations to 

SOP documents.   

 

Semantic search, which involves finding documents that are semantically similar to a user’s query, has been a 

popular topic in information retrieval in recent years. Some previous works include embedding methods based on 

deep learning (refs below), WordNet metrics (O, 1999), Semantic Web relatedness metrics (Gracia & Mena, n.d.), 

topological similarity metrics (O, 1999) (Pekar & Staab, 2002), latent semantic indexing (LSI) (Deerwester, 1988), 

point wise mutual information (PMI) (Fano, 1961), and semantic networks (Sowa, 2015).  In this manuscript, we focus 

on deep learning embedding approaches to find semantically similar documents by converting both the user’s query 

and documents into a latent vector representation. Some examples in the literature include: the sentence-t5-xxl 

model (Ni, et al., 2021), openai’s ada002 (openai, 2022), E5 (Wang, et al., 2024), Cohere’s embed v3 (Reimers, et 

al., 2023), word2vec (Mikolov, Chen, Corrado, & Dean, 2013), GloVe (Pennington, Socher, & Manning, n.d.), 

FastText (Bojanowski, Grave, Joulin, & Mikolov, 2017), ELMo (Peters, Neumann, Iyyer, & Gardner, 2018), BERT 
(Devlin, Chang, Lee, & Toutanova, 2019), and others. After the embedding step, the semantic “relevance” between 

the user’s query and documents are assessed with metrics such as cosine similarity. 
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Comparison to related works 

 
Our proposed approach builds upon previous work by incorporating ideas from semantic search as an initial filter and 

then performing a detailed document comparison. Previous literature methods in document comparison are 

compared below using methods such as composable graphs, a ReAct agent, a sub-question query engine, custom 
querying, and long context LLMs. With our benchmark dataset, we illustrate superior performance with long context 

LLMs. 

 

Compared to past work in regulatory interpretation, our objective differs in a few key aspects. Compared to 

Venkatraman’s work, we wish to identify impacted SOPs based on new regulatory guidance rather than summarizing 

or “chatting” with regulatory documents. As for Cao et al and Shabnam’s work, our domain of applicability is different. 

We are interested in pharmaceutical regulatory intelligence rather than the financial or food safety domains. Lastly, 

Sai et al’s aim is opposite of ours: they wish to identify relevant regulations for a given business process, whereas we 

are looking for impacted business processes and SOPs based on a given set of regulations.   

 
 
METHODOLOGY 

Our AI-powered regulatory monitoring and impact assessment is a 2-step approach as shown in Figure 2. The 

proposed framework comprises an iterative two-stage process for managing regulatory compliance updates across 

pharmaceutical documentation. When new regulatory changes are received, Step 1 employs a semantic filtering 

mechanism to identify potentially impacted SOPs and controlled documents from the organization's document 

repository. Step 2 then conducts a granular document comparison through our LLM framework, which performs three 

key functions: comprehensive comparison between identified SOPs and new regulations, specification of 

discrepancies and conflicts, and generation of a confidence score indicating the likelihood of impact. This multi-tiered 

approach ensures systematic coverage while minimizing false positives and computational cost through semantic 

pre-filtering. The framework culminates in human expert review, where SMEs validate the AI-generated insights and 

implement necessary documentation updates. This human-in-the-loop design maintains critical oversight while 

leveraging AI capabilities to dramatically reduce manual comparison workload. Our later empirical evaluation 
demonstrates that this approach achieves promising accuracy in identifying truly impacted documents while reducing 

review time by approximately from weeks to hours compared to traditional manual methods. 

 

Figure 2: AI-driven Regulatory Monitoring and Impact Assessment 

 
Step 1: Semantic Filtering 

 
A set of regulatory change document summaries and a set of DEV-SOP2 documents comprise the analyzed dataset.  

Summaries of each regulatory change are assumed a priori to effectively describe the regulatory change they 

represent.  The flowchart in Figure 3 illustrates the workflow for Step 1.  

 
2 DEV-SOP: Development Standard Operating Procedures (DEV-SOP) are a comprehensive set of documented 

processes and guidelines established under the Research & Development (R&D) division. These procedures ensure 

consistency, compliance, and quality across all R&D activities, aligning with regulatory standards and organizational 

objectives. 
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Figure 3: Semantic Filtering (Step 1) flowchart 

 
Each DEV-SOP was either natively in Microsoft Word docx format with formatted headings or coerced to docx using 

the python pdf2docx and spire.doc packages. They were parsed using a hierarchical approach with the docx python 

package where each level 1 heading was used to divide text and tables (table contents are parsed row-wise and 

added to the text) into sections, then each section was sub-chunked to a size of 512 tokens.  Non-English chunks 

were then detected and removed using language detection LLM, juliensimon_xlm-v-base-language-id.  Summaries of 

each regulatory change and all DEV-SOP text chunks were embedded using sentence-t5-xxl and compared to assign 

pairwise similarity scores.  In the following sections, we will use regulation 119 and 1463 as examples. 
 
Similarity scores were converted to a binary classifier using a rule-based approach where DEV-SOP section 

headings are harmonized to a set of unified headings, and a DEV-SOP score must be greater than the percentile 

threshold of a regulatory change’s total score distribution in addition to passing a flat similarity score cutoff.  A DEV-

SOP must have a requisite number of chunks passing those criteria within the harmonized sections in order to be 

considered impacted.  The score used could be either cosine similarity, angular distance, or the square root.  Angular 
distance is given by ((f(x)=1−arccos(x)/π)) and square root is given as (f(x)=√1−(1−x)/2), where x is the cosine 

similarity score values.  Specific parameters, including score type, are optimized with a grid search based on a subset 

of ground truth for regulation 119 (95th percentile cutoff, 0.77 flat cutoff for angular distance, and 8 chunks required in 

harmonized headings). 

 
Taxonomy Tree 

  
A taxonomy tree-based approach was explored as an alternative approach to semantic filtering. First, an XML tree of 

topics and subtopics (2-layer tree) relevant to medical study administration is built using OpenAI model GPT-4o using 

prompting. Using either GPT-4o or GPT-4o-mini, the XML tree was then passed to a second prompt along with the 

text of a regulatory change summary to assign a topic or subtopic to that regulatory change.  Following that, each 

DEV-SOP text was concatenated with section headings, and data extracted from tables into a single text chunk and 

passed to a third prompt along with the XML tree to extract relevant topics and subtopics for that DEV-SOP.  Topic 

extraction for each DEV-SOP was repeated 5 times and a set of topics that appeared at 80% frequency or greater 

was then used to determine the topic set. Relevancy was determined if any topic of the DEV-SOP topic set matches 

the regulatory change topic. Topic matching could occur either in a child subtopic or in the parent topic.  

 

 
3 Regulation 119 is an EMA guideline on computerized systems and electronic data in clinical trials; Regulation 146 is 

a FDA guidance document on considerations for the conduct of clinical trials of medical products during major 

disruptions due to disasters and public health emergencies 
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Step 2: Document Comparison 
 
We explored three approaches to comparing documents: custom queries, a ReAct agent, and a long context window 

LLM. Our preliminary assessment of Composable Graphs revealed long runtimes and poor performance. As a result, 

we did not include this approach in the final experiment. Additionally, our preliminary assessment of the sub question 

query engine  revealed low performance. We instead generated our own set of sub-questions (i.e. custom queries) 

for the model and synthesized the results. The long context window approach involved combining the full text of both 

the regulatory document and the SOP into one prompt, and this limited our choice of LLMs to those with a context 

window of 128k tokens (or larger).  

 

Custom Queries  
 

The sub question query engine produced poor results in our preliminary analysis due to the model’s inability to 
generate appropriate sub-questions from the original query. As a result, we subdivided our main document 

comparison query to mimic this approach. The same chunking procedure was applied to the DEV-SOP documents as 

described in Step 1. The pdf file of the regulatory document was parsed using 'SimpleDirectoryReader' from 

LlamaIndex. We deployed GPT-4o as the model for this approach and 'bge-base-en-v1.5' embeddings to index 

documents. First, we queried the model to list topics and subtopics outlined in the table of contents of the regulatory 

document. This query was run five times, and topics that were present in all five runs were saved. Then we queried 

the model to identify parts of the DEV-SOP document that are relevant to the regulatory document topics identified. If 

at least one of the topics were relevant, the document was labeled as impacted. Otherwise, the document was 

labeled as not impacted. We prompt engineered this approach on 36 document comparisons, consisting of regulation 

119 and 36 DEV-SOP documents.  

 

ReAct Agent 

 
In our study, we implemented a ReAct-based LLM agent using GPT-4o for the agent and OpenAI embeddings within 

the RAG query tools. We utilized the LlamaIndex implementation to build the agent and its tools, facilitating seamless 

integration of the reasoning and retrieval processes (LlamaIndex; ReAct Agent, 2024). The agent was tasked with 
identifying the main topics in both the SOP and the regulatory document, reasoning about potential conflicts, and 

performing targeted queries to compare specific sections. One hyperparameter in this setup is the maximum number 

of iterations or tool uses. Initially set to 20, we increased this limit to 30 after observing that the agent occasionally 

required additional steps to complete its task. 

 

Despite the promise of this approach, we encountered challenges with the RAG retrieval mechanism, which was 

configured to return the top 5 or 10 document chunks per query. This retrieval often lacked precision, as the most 

relevant sections were not always included, leading to less accurate comparisons. Additionally, the agent 

occasionally produced outputs that were inconsistent with its intermediate reasoning steps, indicating limitations in 

integrating reasoning and action phases. 

 

An additional difficulty we faced was engineering the initial prompt to achieve consistent outputs, given the 20+ 

intermediate reasoning and querying steps performed by the agent. This highlights the sensitivity of ReAct-style 
agents to prompt quality when tasked with multi-step, complex reasoning workflows. Our findings align with prior 

research showing that the effectiveness of ReAct prompting can vary depending on the coherence of reasoning 

traces and the precision of retrieval mechanisms. (Verma, Bhambri, & Kambhampati, 2024) These challenges 

underscore the need for further optimization of both retrieval strategies and prompt design to improve consistency 

and performance of ReAct agents in long-context reasoning tasks. 

 

Long Context Approach 

 
To address the limitations observed with the ReAct and RAG-based methods—such as imprecision in retrieval, 

inconsistencies between reasoning steps and outputs, and difficulties in prompt engineering—we adopted a long 

context approach. This method involved combining the full text and tables of both the regulatory document and the 

SOP into a single input, preceded by an initial prompt (Supplementary Material 1) that explained the task and 
provided instructions on how to compare the documents. This approach required the use of LLMs with extended 

context windows, specifically GPT-4o, which supports inputs up to 128k tokens. 

 

The key advantage of the long context approach is its ability to process both documents simultaneously within a 

unified context window. This avoids the fragmentation inherent in retrieval-based methods, where only subsets of the 

documents (e.g., top 5 or 10 chunks) are queried at any one time. In this way, the long context approach enables the 

model to identify relationships and conflicts at both a global and a token-level scale, without risking the omission of 

critical information. 

 

This improvement can be understood through an analogy to cross-encoders and bi-encoders (ntongana, n.d.) in NLP. 

While bi-encoders process two inputs independently and compare their embeddings, cross-encoders process both 
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inputs together, allowing the model to evaluate interactions between tokens directly. Similarly, by placing the full texts 

of both documents into the same prompt, the long context approach allows the LLM to directly compare and analyze 

the content across the two texts without losing detail. We found that the total token usage and time required to 

generate a comparison was similar to the ReAct agent, but the quality of the summaries and classifications generated 

were improved, in addition to enabling more intuitive prompt engineering.  

 
 

EXPERIMENTS 
 

Comparison of Semantic Filtering versus Taxonomy Tree approach in Step 1 

 
Using the subset of the 49 DEV-SOPs that were validated as ground truth by SMEs as impacted/not impacted by 

regulation 146, a comparison was performed to see whether a marked difference was observed in the error matrix 

performance between the methods. 
 

Figure 4: A) Error Matrix result4 for Step 1 method comparison5. B) Venn diagram overlap of DEV-SOPs identified as 

impacted between ground truth and Step 1 methods. 

 
The error matrix in Figure 4A did not show a large difference in the TP or FN rate between methods.  The topic tree 

approach when topics were identified by GPT-4o had an improved TN and FP rate compared to the tree approach 

using GPT-4o-mini, and the semantic filtering approach.  The result of the TP DEV-SOP overlaps is shown in Figure 

4B, demonstrating that only 1 of the ground truth impacted DEV-SOPs remained unidentified across the methods for 

this set. 

 
Assessment of Document Comparison Approaches in Step 2 

 
We assessed the performance of the three document comparison approaches on regulation 146 and a subset of 

DEV-SOP documents. The subset of DEV-SOP documents consisted of both documents selected by Step 1 and 

those that were not selected by Step 1. A SME validated the comparisons with 49 DEV-SOP documents, and the 

documents were labeled dichotomously as “impacted” or “not impacted". Of the 49 DEV-SOP documents in this 

testing set, 28.6% (n=14) were labelled as impacted and 71.4% (n=35) were labelled as not impacted. The Custom 

Queries and ReAct Agent approaches generated dichotomous conclusions of “impacted” and “not likely impacted”. 

On the other hand, the Long Context approach generated conclusions as High, Medium, or Low impact. We grouped 

the High and Medium impacts and tagged them as “impacted” and tagged Low impacts as “not impacted”.  

 

Overall, the Long Context approach had the highest performance compared to the Custom Queries and ReAct Agent 

approaches, with accuracy of 0.8163 and F1 of 0.7097 (Table 1). While the recall and specificity are higher in ReAct 

Agent and Custom Queries respectively, the Long Context approach demonstrated much higher precision. We note 
that prompt engineering for the Long Context approach was conducted on a subset of the 49 documents we tested.  

 

 

 

 

 

 

 

 

 
4 TP (True Positive): Cases correctly identified as positive by the model. FP (False Positive): Cases incorrectly 

identified as positive by the model. FN (False Negative): Cases incorrectly identified as negative by the model. TN 

(True Negative): Cases correctly identified as negative by the model. 
5 The second and third columns in Figure 4 Table (A) are results from the taxonomy tree approach 
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Table 1:  Performance Metrics of Various Document Comparison Approaches on 49 Document Comparisons of 

Regulation 146 

 

Approach Accuracy F1 Precision Recall Specificity 

Custom Queries 0.6735 0.2000 0.3333 0.1429 0.8857 

ReAct Agent 0.4792 0.5283 0.3590 1.000 0.2647 

Long Context 0.8163 0.7097 0.6471 0.7857 0.8286 

 
 

CONCLUSION  
 

Our study highlights the significant potential of Generative AI frameworks to transform regulatory compliance 

processes in the pharmaceutical industry. By introducing a two-step approach that combines semantic filtering with 

advanced document comparison using LLMs, we have demonstrated how the identification and assessment of 

regulatory updates on internal documents, such as SOPs, can be automated effectively. Empirical evaluations 

validate the promise of this approach, with the Long Context method emerging as the most robust among the tested 

strategies, achieving the highest overall F1 score while maintaining strong recall and specificity. Notably, the study 

also emphasizes the indispensable role of human oversight in validating AI-driven insights, ensuring that the 

framework remains both scalable and reliable in the context of complex, high-stakes regulatory workflows. These 

findings illustrate the practical utility of integrating AI solutions to address long-standing inefficiencies and risks 

associated with traditional compliance methods. In the next phase, the focus will shift to real-world implementation 
and refinement, aiming to streamline the regulatory monitoring process further and resolve the critical challenges that 

manual approaches have historically posed. 

 
To build on the insights from this study, one of our next steps is to operationalize this framework. The proposed 
operational workflow integrates a sophisticated risk-stratified approach with continuous learning capabilities (Figure 

5). The process initiates with AI-driven SOP identification, where our model analyzes regulatory changes and 

automatically assigns High/Medium/Low likelihood of impact tags to potentially affected SOPs. This classification 

feeds into a risk-based assessment framework. SMEs categorize regulations as either High-Risk or Standard based 

on the importance and urgency of regulations, which determines subsequent review pathways. The High-Risk path 

encompasses review of both high and medium impact SOPs (approximately 50 documents), while the Standard path 

focuses exclusively on high-impact SOPs (approximately 10-15 documents). Both paths benefit from AI-generated 

insights, and functional area mapping. A critical step in our workflow is the Functional Review & Feedback Loop, 

where internal quality compliance specialists distribute concise one-page summaries of AI determination and insights 

to functional representatives. This human-AI collaborative approach not only validates AI assessments but also 

generates valuable feedback data that continuously enhances model accuracy, expecting to achieve significant 

efficiency gains and accuracy lift. 
 

 

Figure 5: Proposed human-AI collaborative Operational Process 
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A web application was developed using the Streamlit package in Python to facilitate the collection of feedback from 

SMEs. The app allows the user to select a regulation, navigate through potentially impacted SOPs, and indicate 

whether they agreed with the AI-generated impact assessment and its explanation. An example is attached in the 

supplementary material. We are working with business stakeholders to embed this application into our operational 

workflow. 
 
Despite promising results, several limitations exist. First, since regulatory monitoring process is relatively new at 

Biogen, we do not have a large number of historical data points. Our study was constrained by a relatively small 

dataset of regulatory changes and their corresponding impacted SOPs. The ground truth annotations were 

accumulated gradually during model development, preventing us from implementing an ideal train/validation/test split 

typically expected in machine learning research, and these details have been discussed in experiments section. This 

limitation potentially introduces bias in our performance metrics and may affect the generalizability of our findings to 

broader regulatory contexts. Second, while our reproducibility assessment demonstrated robust overall performance, 

we observed inherent variability in the High/Medium/Low likelihood of impacted generated by the LLM component. 

Running the approach three times on the testing set yielded a 91.8% match in all three runs when assessing the 

variability of impacted versus not impacted determinations and an 81.6% match when assessing the variability of 

High/Medium/Low determinations. This variability highlights the probabilistic nature of LLM-based decision-making 

systems. Additionally, the use of LLMs in Step 2 of our framework presents challenges in terms of complete model 
transparency. Although we implemented explicit reasoning output to enhance result interpretability, the underlying 

decision-making process of the LLM remains partially opaque. This "black box" aspect could pose challenges in 

regulated environments where full algorithmic transparency might be required. Lastly, the AI system is not infallible. 

There is a risk that the framework could classify a regulatory update as having "Low" impact when, in reality, it is of 

"High" importance. Such misclassifications could lead to oversights in compliance, posing significant risks in 

regulated environments. Addressing this requires continuous optimization, iterative testing, and integration of human 

expertise to mitigate potential consequences of these errors. Future work should focus on increasing the sizes of 

training and testing datasets, extending application to other document types (e.g. Job Aids, etc.), implementing more 

rigorous validation protocols, and exploring approaches to enhance the deterministic nature of impact classifications 

while maintaining the advantages of LLM-based analysis. 
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SUPPLEMENTARY MATERIAL 
 

Supplementary Material 1: Prompt for the LLM in the long context approach of Step 2  

"""INSTRUCTIONS: The text of two documents follows; first is a newly published regulation, and after that is an 

internal SOP from Biogen. Your job is to make a determination of HIGH, MEDIUM, or LOW for the likelihood that the 
SOP needs to be updated in order to be in compliance with the regulation. In addition to providing your determination, 

identify the specific sections in the regulation and the SOP that appear to be in conflict with each other. The rubric for 

making your determination is as follows: If the topics covered in the SOP directly overlap with those in the regulation 

and there are sections that are potentially in conflict, the likelihood of needing an update should be HIGH. If the SOP 

and regulation topics do not directly overlap but are conceptually related and potentially in conflict, it should be 

MEDIUM. If the topics covered by the SOP are not related to the regulation, the likelihood of needing an update 

should be LOW. The title of the SOP should be an important factor in determining if it is likely to be relevant to the 

regulation. """ 

Supplementary Material 2: Example of Streamlit Application 

 


