TT05: Digital SAP Model

Tom Ratford, PHUSE EU Connect 2025

Vera/nec

Problem Statement

5. DEFINITIONS

5.1. Efficacy

5.1.1. Primary Objective and Endpoint

The primary objective is to demonstrate a net negative copper balance with daily repeat-dose ALXN1840 treatment (15 mg and 30 mg) in participants with WD.

The primary endpoint is the mean daily copper balance where copper balance is measured by the calculated difference between copper intake (in food and drink) and copper output (in feces and urine) and copper output (in feces and urine) and the compared to the compared to the compared to the calculation and steady-state periods for each dose.

5.1.1.1. Balance Measurements

Copper balance measurements will be made on all intake (ie, study drug, flood and fluids) and all output (urine and feecs) from participants as indicated in the schedule of ractivities (SoA) in the Protocol Table 1. The copper concentration of each sample will be determined by inductively coupled plasma mass spectrometry (ICP-MS). Copper content of all intake and output will be calculated based on the volume or weight of intake and output and the concentration of representative samples.

5.1.1.1.1. Food and Fluid Collection for Copper and Molybdenum Concentrations

Samples of all meal and fluid batches will be collected and analyzed for measurement of copper content. A minimum of 3 complete portions/meals from each food and liquid batch will be sent for analysis. All participants will drink water from the same large water bottle dispenser. Samples of water from this dispenser will be collected and analyzed for copper content.

Samples will be collected, stored and shipped as detailed in the Laboratory Manual. All sample handling procedures will be documented in detail in the Laboratory Manual. Copper concentration of each food sample (ng/g) and each fluid sample (ng/mL) sample will be

5.1.1.1.2. Urine Collection for Measurement of Copper and Molybdenum Content

Urine samples to measure copper content will be collected periodically as described in the SoA (Protocol Table 1). Samples will be collected, stored and shipped as detailed in the Laboratory Manual. For each 24-shour collection period, urine will be pooled for analysis and volumes will be recorded. All sample handling procedures will be documented in detail as described in the Laboratory Manual. Copper concentration (ng/ml.) of each 24-shour urine sample will be

5.1.1.1.3. Fecal Collection for Measurement of Copper and Molybdenum Content

Fecal samples to measure copper content will be collected periodically as described in the SoA (Protocol Table 1). Samples will be collected, stored, and shipped as detailed in the Laboratory Manual. Fecal samples will be individually collected, weighed, and stored. The weight and time of each bowel movement will be recorded. All sample handling procedures will be documented


```
"study": {
    "id": null,
    "name": "Study_ALXN1840-WD-204",
    "description": null,
    "label": null,
    "versions": [
    {
        "di": "StudyVersion_1",
        "versionIdentifier": "2",
        "rationale": "cypThe principal aim of this exploratory study is to investigate the effects of ALXN1840 on copper balan
    "studyType": {
        "id": "Code_1",
        "code": "Code_388",
        "codeSystem": "http://www.cdisc.org",
        "codeSystemVersion": "2023-12-15",
        "decode": "Interventional Study",
        "instanceType": "Code"
        },
        "studyPhase": {
        "id": "AliasCode_1",
        "studyOphase": {
        "id": "Gode_2",
        "codes": "IS601",
        "codes": "IS601",
        "codesystem": "http://www.cdisc.org",
        "codesystemVersion": "2023-12-15",
        "decodes": "Thase II Trial",
        "decodes": "Phase II Trial",
        "decodes": "Phase II Trial",
        "decodes": "Phase II Trial",
```

What's in a SAP?

Introductory Sections

- Table of Contents
- Abbreviations and definitions
- Introduction
- Objectives, Endpoints and Estimands
- Study Methods
- Sample Size
- General Considerations

Analysis Sections

- Summary of Study Data
- Efficacy Analyses
- Safety Analyses
- Pharmacokinetics
- Other Analyses

Useful Information Sections

- Reporting Conventions
- Technical Details
- Summary of Changes to the Protocol
- References
- Amendments to the SAP
- Appendices

What's in a SAP?

Introductory Sections

- Table of Contents
- Abbreviations and definitions
- Introduction
- Objectives, Endpoints and Estimands
- Study Methods
- Sample Size
- General Considerations

Analysis Sections

- Summary of Study Data
- Efficacy Analyses
- Safety Analyses
- Pharmacokinetics
- Other Analyses

Useful Information Sections

- Reporting Conventions
- Technical Details
- Summary of Changes to the Protocol
- References
- Amendments to the SAP
- Appendices

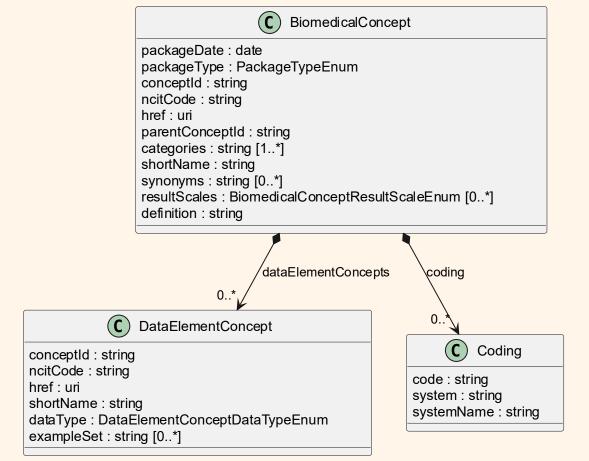
What's in a SAP?

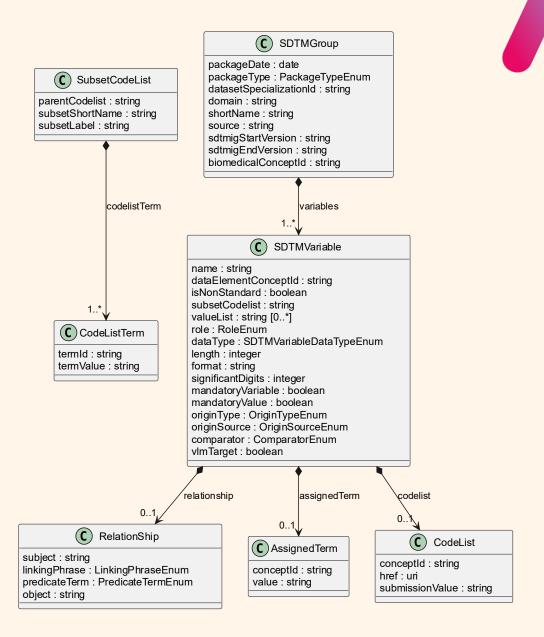
Introductory Sections

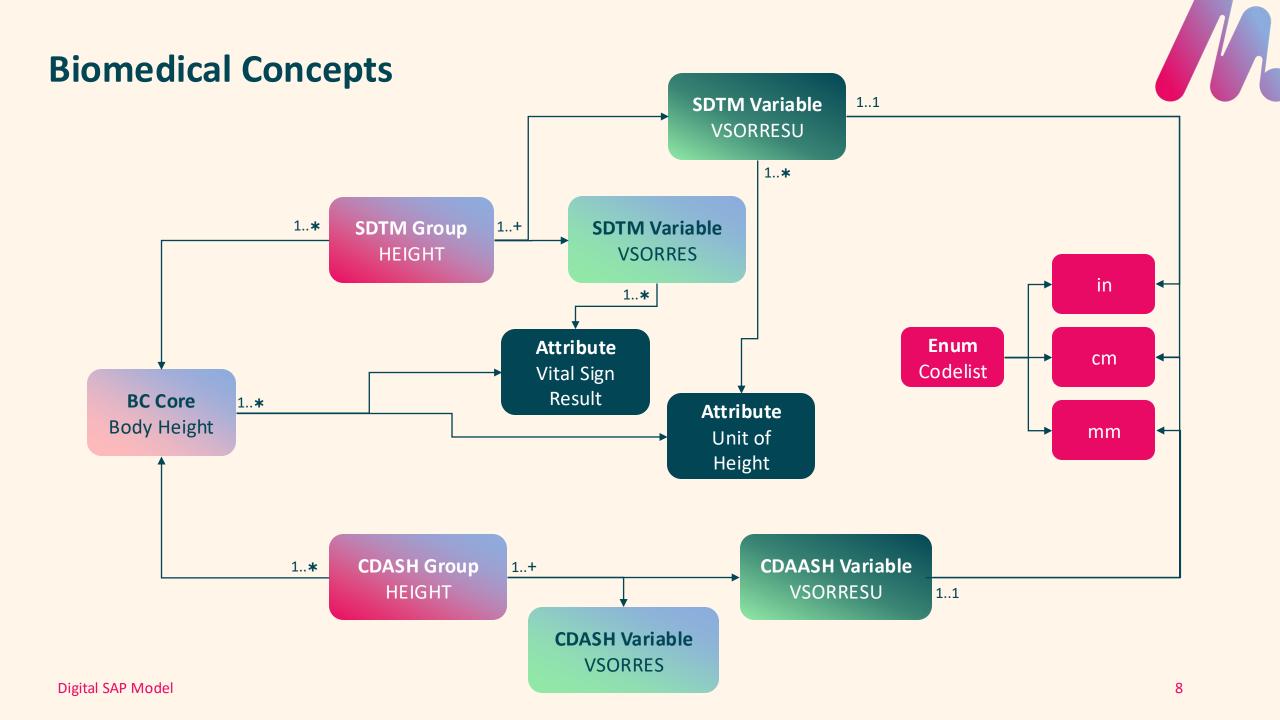
- Table of Contents
- Abbreviations and definitions
- Introduction
- Objectives, Endpoints and Estimands
- Study Methods
- Sample Size
- General Considerations

Analysis Sections

- Summary of Study Data
- Efficacy Analyses
- Safety Analyses
- Pharmacokinetics
- Other Analyses

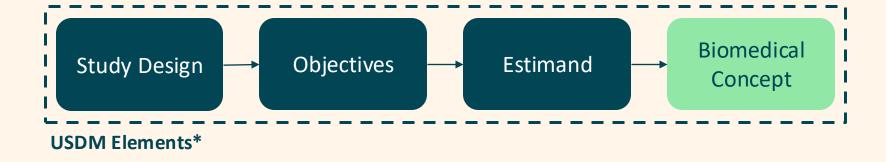

Useful Information Sections

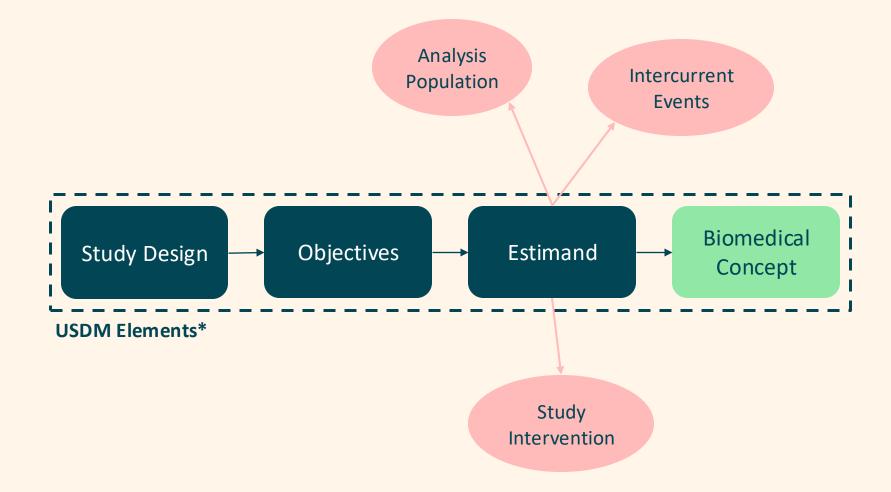

- Reporting Conventions
- Technical Details
- Summary of Changes to the Protocol
- References
- Amendments to the SAP
- Appendices

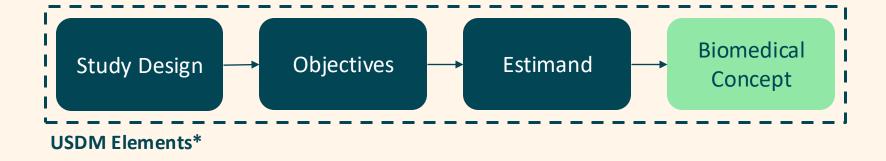


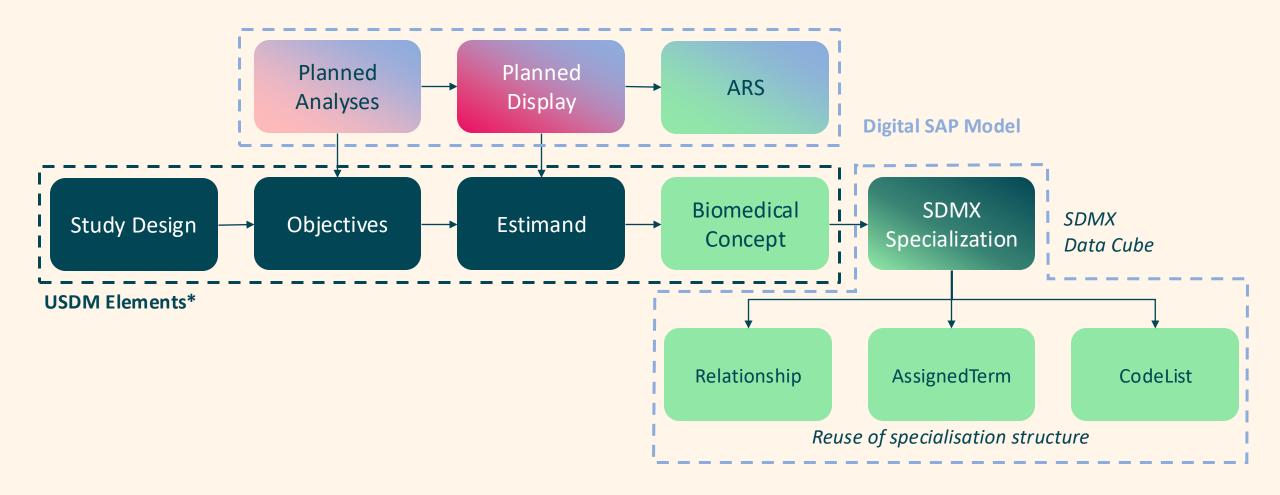
Reusing existing structures

Biomedical Concepts




USDM


USDM


USDM

Digital SAP Model Linkage

SDMX

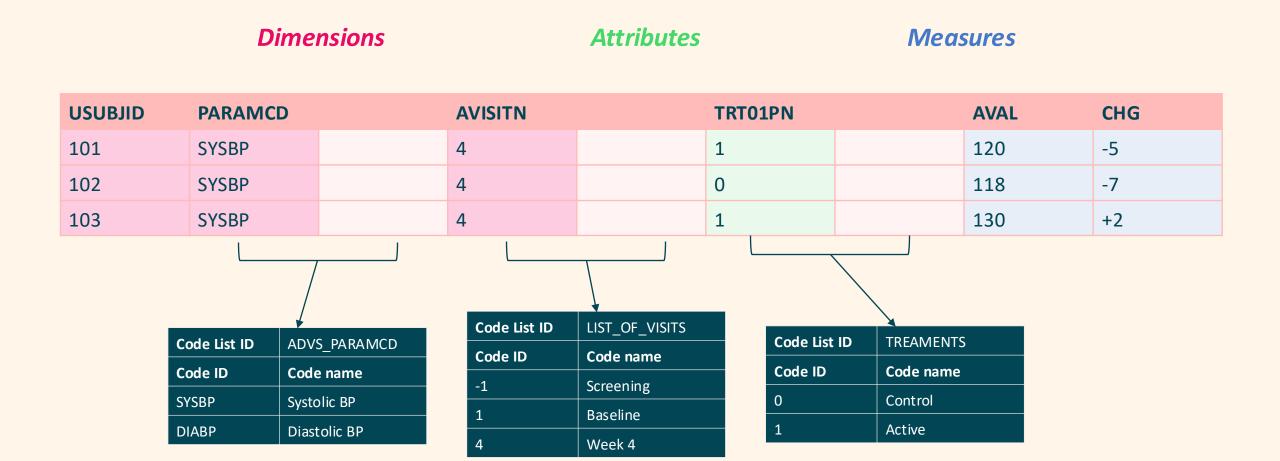
Statistical Data and Metadata eXchange

USUBJID	PARAMCD	PARAM	AVISITN	AVISIT	TRT01PN	TRT01P	AVAL	CHG
101	SYSBP	Systolic BP	4	Week 4	1	Active	120	-5
102	SYSBP	Systolic BP	4	Week 4	0	Control	118	-7
103	SYSBP	Systolic BP	4	Week 4	1	Active	130	+2

Dimensions

USUBJID	PARAMCD	PARAM	AVISITN	AVISIT	TRT01PN	TRT01P	AVAL	CHG
101	SYSBP	Systolic BP	4	Week 4	1	Active	120	-5
102	SYSBP	Systolic BP	4	Week 4	0	Control	118	-7
103	SYSBP	Systolic BP	4	Week 4	1	Active	130	+2

DimensionsMeasures


USUBJID	PARAMCD	PARAM	AVISITN	AVISIT	TRT01PN	TRT01P	AVAL	CHG
101	SYSBP	Systolic BP	4	Week 4	1	Active	120	-5
102	SYSBP	Systolic BP	4	Week 4	0	Control	118	-7
103	SYSBP	Systolic BP	4	Week 4	1	Active	130	+2

Dimensions Attributes Measures

USUBJID	PARAMCD	PARAM	AVISITN	AVISIT	TRT01PN	TRT01P	AVAL	CHG
101	SYSBP	Systolic BP	4	Week 4	1	Active	120	-5
102	SYSBP	Systolic BP	4	Week 4	0	Control	118	-7
103	SYSBP	Systolic BP	4	Week 4	1	Active	130	+2

Dimensions Attributes Measures

USUBJID	PARAMCD	AVISITN	TRT01PN	AVAL	CHG
101	SYSBP	4	1	120	-5
102	SYSBP	4	0	118	-7
103	SYSBP	4	1	130	+2

Code List ID	ADVS_PARAMCD
Code ID	Code name
SYSBP	Systolic BP
DIABP	Diastolic BP

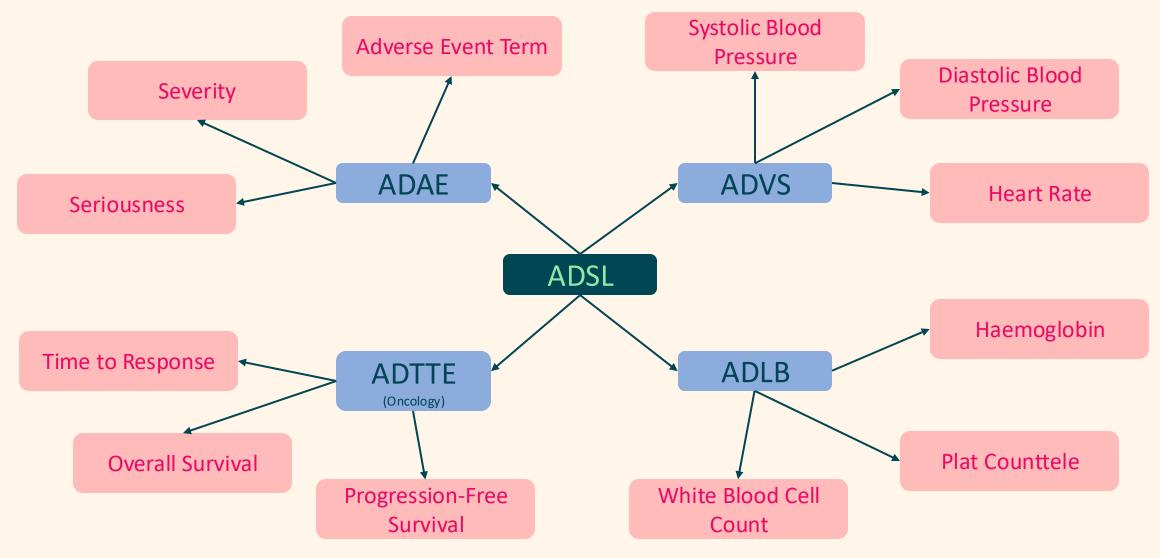
Code List ID	LIST_OF_VISITS
Code ID	Code name
-1	Screening
1	Baseline
4	Week 4

Code List ID	TREAMENTS
Code ID	Code name
0	Control
1	Active

SDMX Specialization Relationships

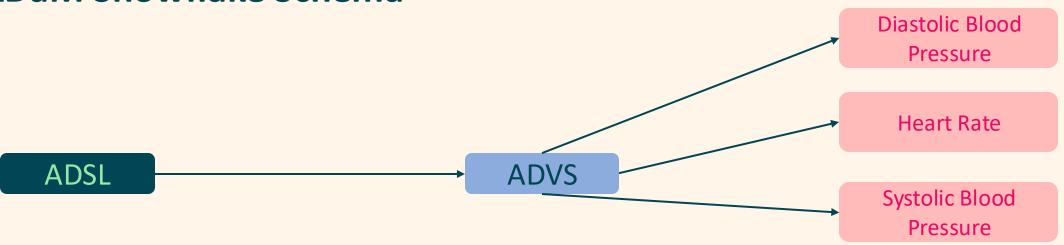
PARAMCD is a dimension of ADVS

AVAL is a measure of ADVS

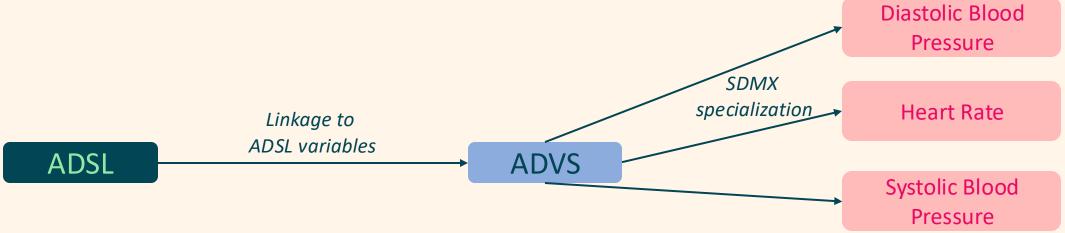

ADVS_PARAMCD is the code list for PARAMCD

SYSBP is a code ID of ADVS_PARAMCD

Systolic BP is the code name of ADVS_PARAMCD.SYSBP

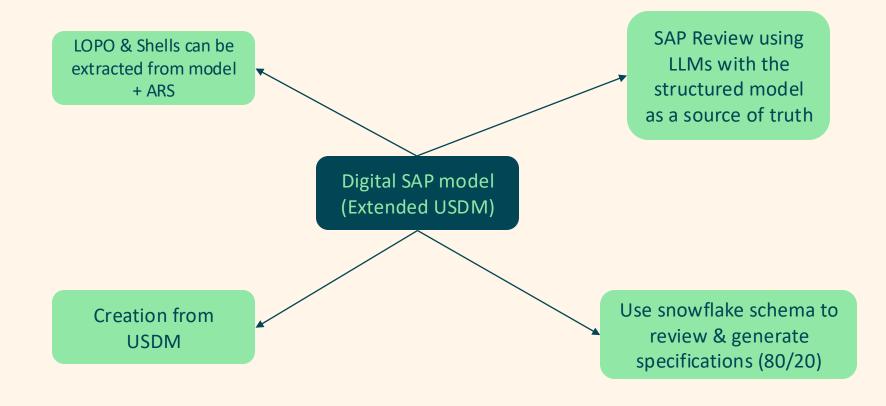

ADaM Snowflake Schema

ADaM Snowflake Schema



USUBJID	PARAMCD	AVISITN	TRT01PN	AVAL	CHG
101	SYSBP	4	1	120	-5
102	SYSBP	4	0	118	-7
103	SYSBP	4	1	130	+2

ADaM Snowflake Schema


USUBJID	TRT01PN
101	1
102	0
103	1

PARAMCD	AVISITN
SYSBP	4
SYSBP	4
SYSBP	4

AVAL	CHG
120	-5
118	-7
130	+2

Automation Potential

Questions?

tom.ratford@veramed.co.uk