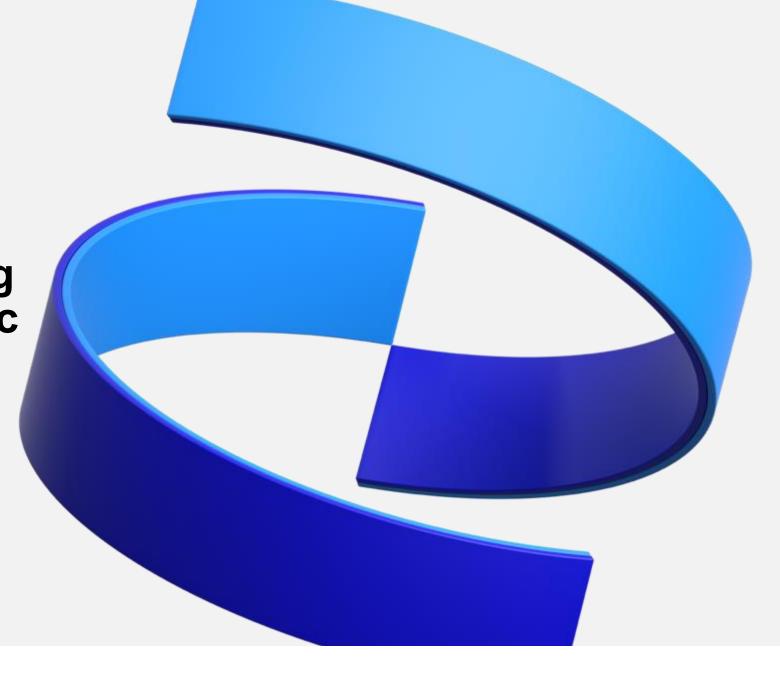
RE06: Unlocking Healthcare Insights:

Graph-Based Modeling & Analysis of Synthetic Patient Data

George Panagiotakis – <u>Georgios.Panagiotakis@pfizer.com</u>
Nik Kountouris – <u>Nikolaos.Kountouris@pfizer.com</u>
Maria Puri – <u>Maria.Puri@pfizer.com</u>

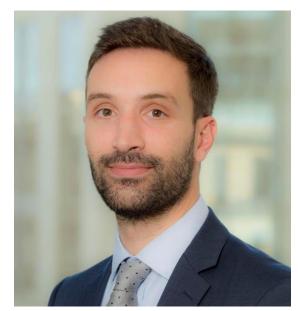
PHUSE EU CONNECT - NOVEMBER 2025



Who we are?

- **Nik Kountouris** joined Pfizer in June 2023 as a Senior Manager and has been leading the RWD & PRO teams.
- Nik holds a BSc in Applied Mathematics, a MSc in Financial Mathematics and a MSc in Big Data Analytics.
- Nik has gained significant experience in data analytics and risk management through his work in the banking, consulting and technology industries in the UK.
- Prior to Pfizer, Nik headed the Data Science & BI teams across EMEA at Citrix.

- George Panagiotakis joined Pfizer in June 2023 as a Senior Associate and has been supporting the RWE Internal Medicine team.
- George holds a BSc & MSc in Computer Science.
- He has experience with machine/deep learning techniques, software development and data analytics.



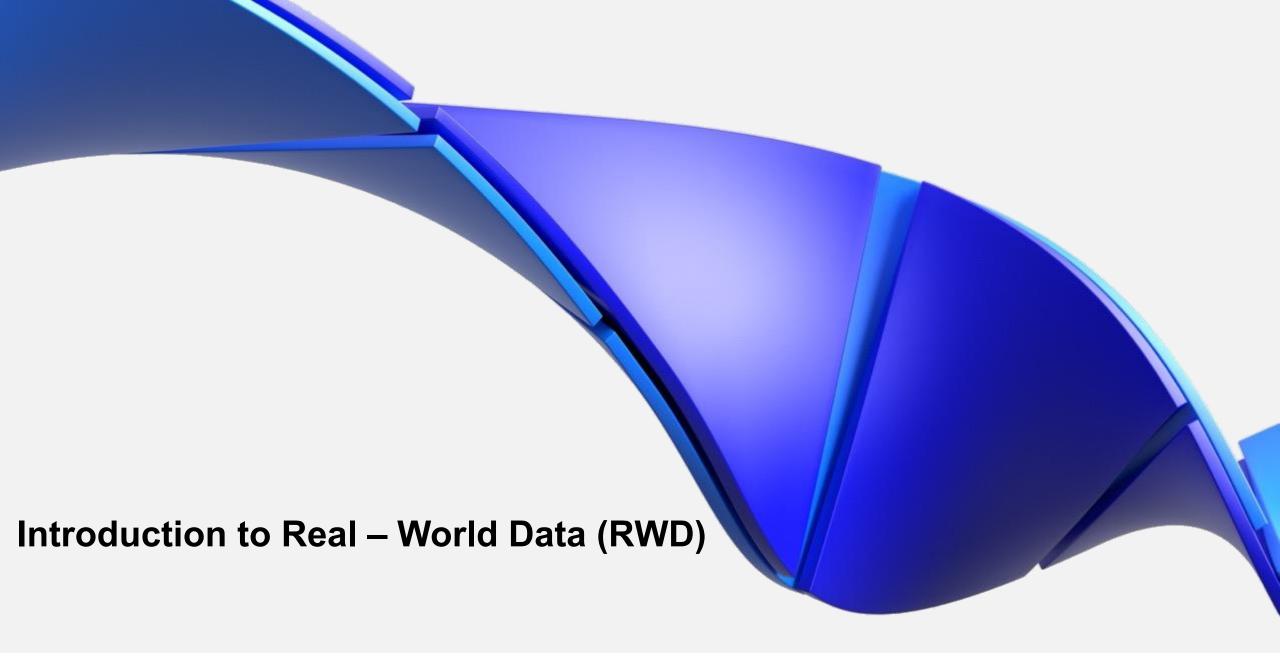
Agenda

- 1. Problem Statement
- 2. Introduction To Real-World Data (RWD)
- 3. Introduction to Synthetic Data
 - Using Synthea
 - Challenges of Synthetic Data
- 4. Introduction To Graphs & Graph Modeling
- 5. Practical Examples
- 6. Key Takeaways

Problem Statement

The Challenge: Capturing Complex Patient Journeys

- Patient journeys are not linear but rather a network of information.
- **Relational Models** transforms this network into rigid tables losing meaning in the way.
- Graph models, mirror the real structure of healthcare data, preserving relationships and unlocking deeper insights.



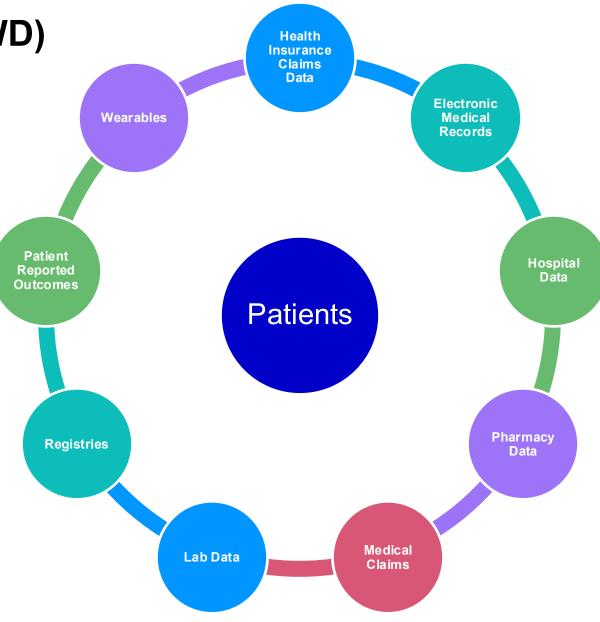
Breakthroughs that change patients' lives

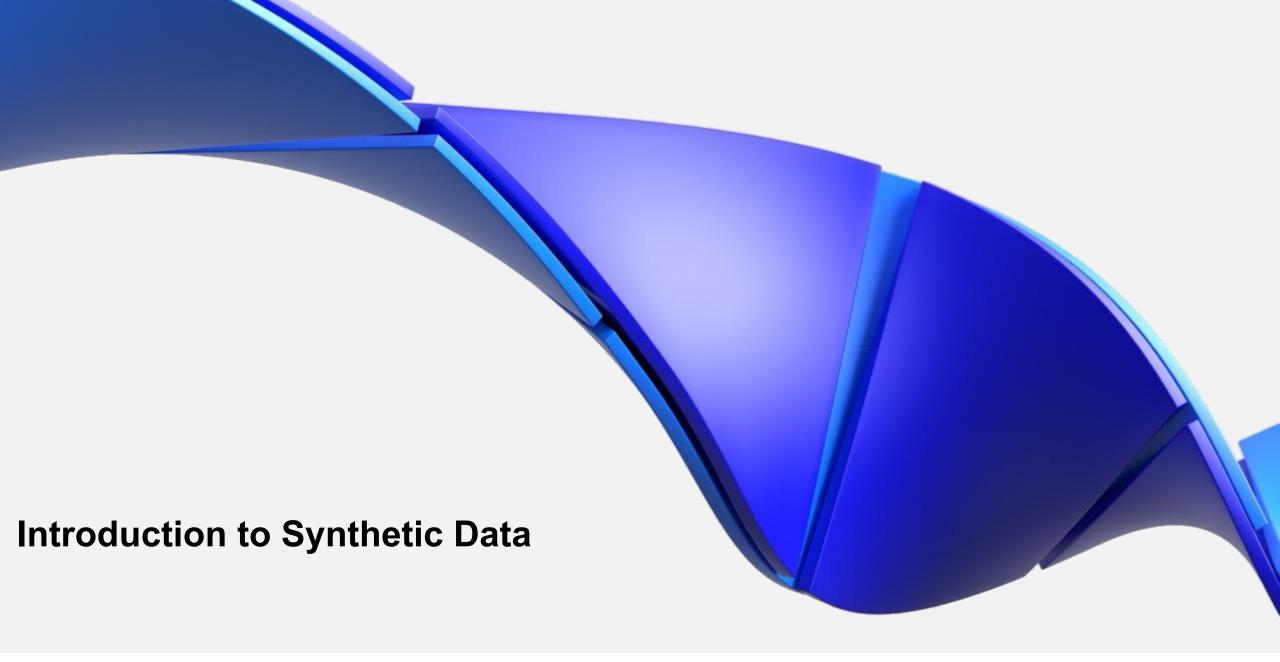
Introduction To Real-World Data (RWD)

 Real-World Data (RWD) refers to health-related information gathered from different sources.

 Interest grew due to Randomized Clinical Trials (RCT) limitations along with tech advancements.

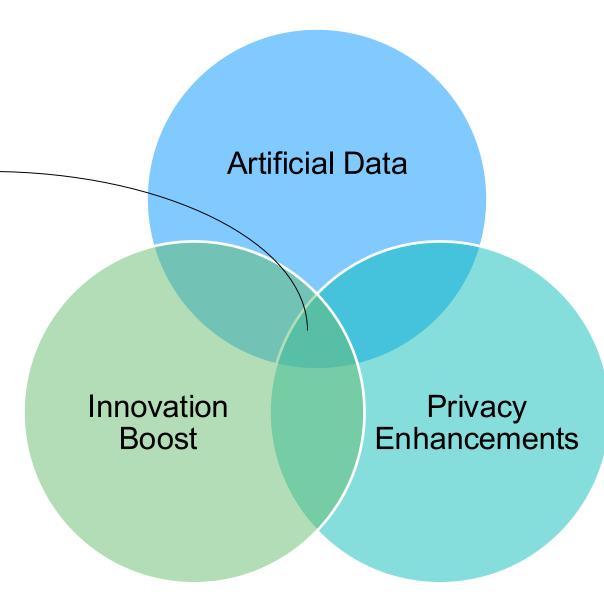
- Enables pragmatic insights on real-world settings.
- Real-World Evidence (RWE) is the clinical evidence derived from analyzing RWD.
- Complements clinical trial data with real-world effectiveness, safety and utilization, and enables pragmatic insights on real-world settings.





Introduction To Synthetic Data

- Synthetic data refers to artificially generated information.
- Intended to mirror the features, correlations, and statistical patterns present in real-world datasets.
- Eliminated the **risk of compromising** real patient information.
- Encompasses clinical or biological information (e.g. Patient demographics, lab results, EEG etc).
- Synthetic data accelerates innovation & has empowered researchers & organizations to explore new frontiers.



Using Synthea

- Synthea is a rule-based synthetic data generator.
- Generates high-quality, clinically realistic but entirely FAKE patient data.
- Is free of cost and privacy restrictions to support research.
- It models conditions as modules, depicting a flowchart of clinical states and transitions.
- Supports multiple conditions such as atrial fibrillation, diabetes, breast cancer etc.
- Outputs in different formats such as FHIR and CSV.

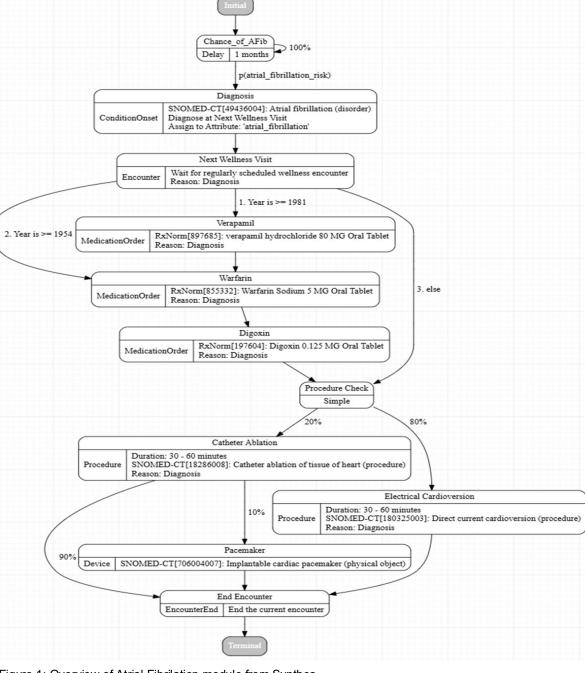


Figure 1: Overview of Atrial Fibrilation module from Synthea Synthea Generic Module Builder accessed 10/1/2025

Challenges of Synthetic Data

Fairness & Bias

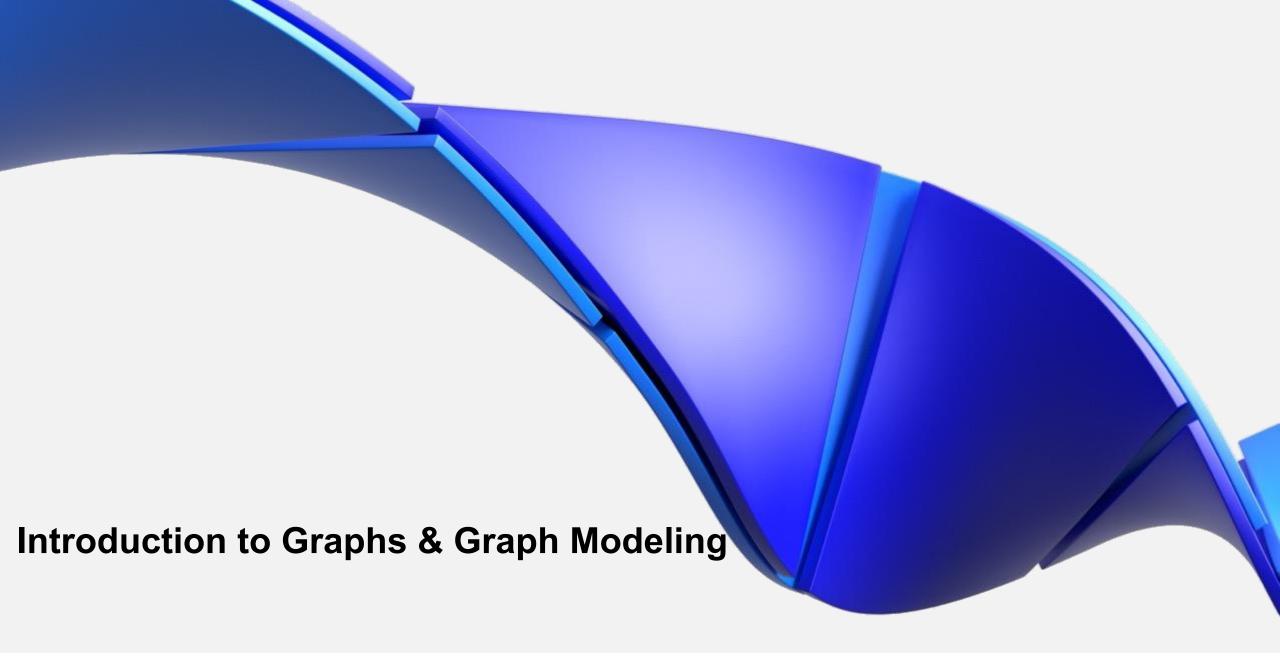
- Concerns on biases existence due to existence on original data (e.g. gender disparities).
- Such biases can be amplified in synthetic data, leading to distorted.

Data Utility & Privacy

Concerns on re-identifying real patient information if closely resembling real data.

Fidelity

• Fidelity refers to how the synthetic data preserve statistical patterns of the real data.



Breakthroughs that change patients' lives

Introduction To Graphs

What is a graph?

- ☐ Graphs and graph theory originated as a branch of discrete mathematics.
- ☐ Graphs are **schema-free** and **flexible**.
- ☐ They consist of nodes and edges reflecting entities and their relationships.
- ☐ Graphs can be directed, undirected, weighted, unweighted, heterogeneous, homogeneous, include loops and other.
- ☐ Graphs model many **real-world systems**, for instance, a healthcare network with patients, providers and their interactions.

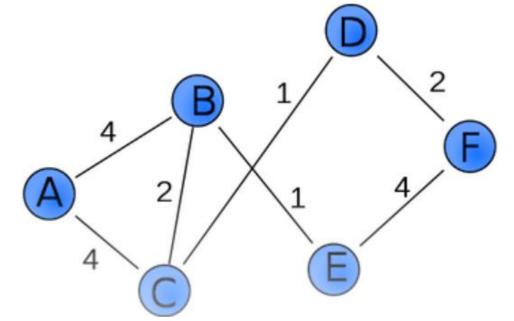


Figure 2: Illustration of a weighted graph, <u>Directed vs. Undirected Graphs | Overview, Examples & Algorithm.</u>
-Lesson | Study.com accessed 10/1/2025

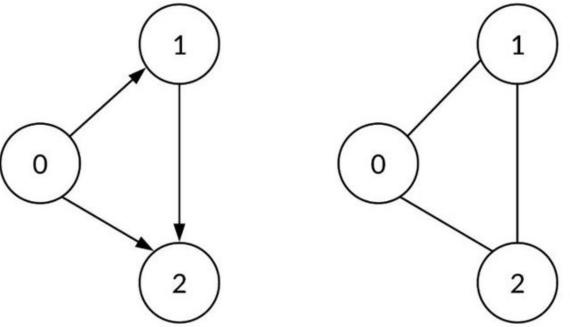


Figure 4: Overview of Directed and undirected graphs, <u>Graphs UMPIRE Cheat Sheet | CodePath Gliffnotes</u> accessed 10/1/2025

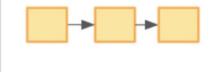
Introduction To Graph Data Science

What is Graph data science?

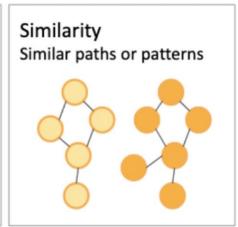
- ☐ Use of graph-based algorithms about analysis of data represented as graphs.
- ☐ Used for uncovering patterns, clustering and supporting decision-making.
- ☐ Different categories:
 - ☐ Centrality Algorithms: Measure importance in a network.
 - ☐ Community Detection: Finding groups or densely connected vertices.
 - □ **Path-Finding:** Searching for optimal paths in a graph.
 - ☐ Similarity algorithms: How similar nodes are based on their neighborhoods.

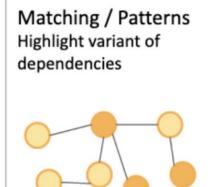
Dependencies

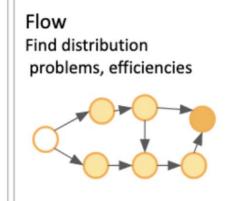
- · Failure chains
- Order of operation



Clustering Finding things closely related to each other (friends, fraud)







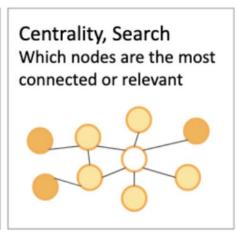


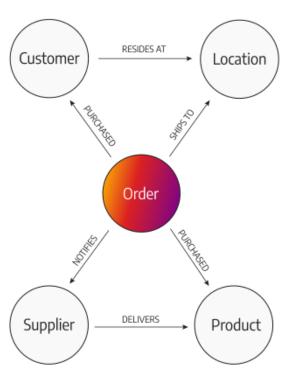
Figure 4: Different categories of graph algorithms, <u>Data Science with Graphs - using knowledge graphs on the data before it reaches the ML phase - deepsense.ai</u> accessed 10/1/2025

Introduction to Graph Databases

What is a graph database?

- ☐ Graph databases store information in graph structures (such as Neo4j, Amazon Neptune).
- □ Represent data as a property graph model or RDF models.
- ☐ Treat relationships as first-class citizens, eliminating the need of costly join operations.
- □ Support specialized query languages for navigating and pattern-matching within graphs, such as **Cypher** for **Neo4j**.

GRAPH DB RELATIONAL DB



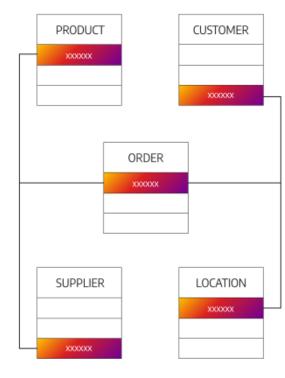


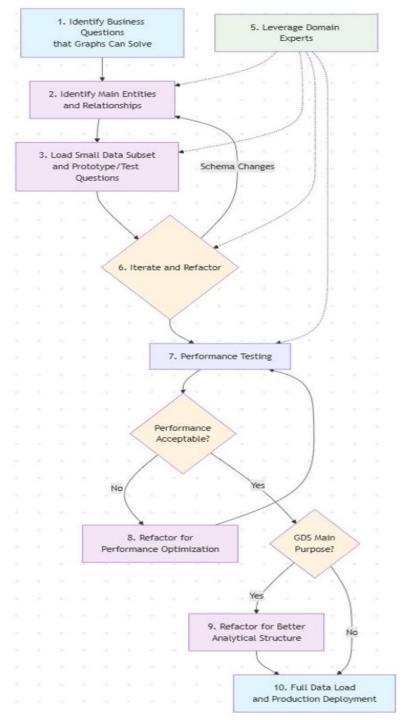
Figure 5: Graph Database overview, What is a Graph Database? accessed 10/1/2025

Introduction to Graph Modelling

Graph Modeling: A Blend of Art and Science

Key steps:

- 1. Identify business questions **best addressed by graphs** and let them define the schema. Examples include:
 - ✓ Which providers serve as connectors/bridges?
 - ✓ What patient clusters emerge naturally?
- 2. Identify main entities and relationships that represent business logic.
- 3. Load **small sample** of the data and **test the questions.**
- 4. Iterate and optimize the schema and its performance as more data is added.
- 5. Engage with **domain experts** for insights and validation from early steps.
- 6. If **focusing on Graph Data Science**, **restructure** the schema to enhance efficiency and usability.

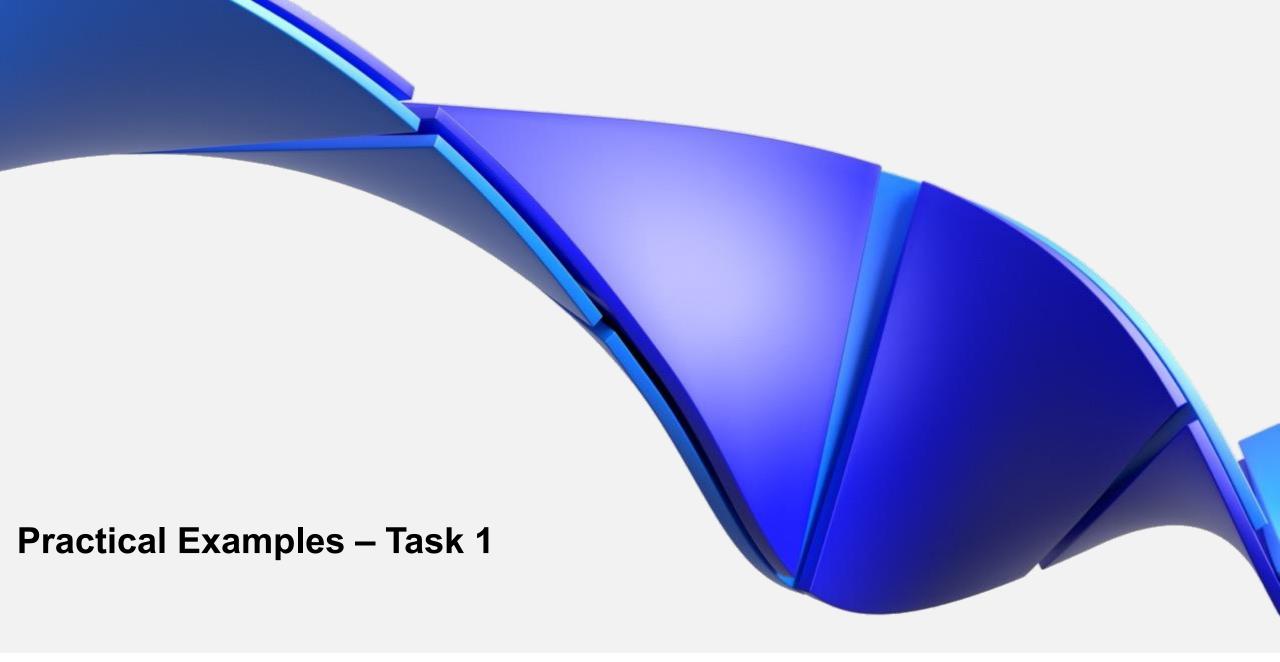




Before we continue

In the following slides, we will demonstrate a series of practical tasks designed to illustrate the application of graph-based modeling in healthcare data.

- 1. Task 1: Model a set of synthetic data (~100 patients) into a graph structure.
- 2. Task 2: Define a graph schema and compare performance between GDB and RDB on a larger dataset (~80,000 patients).
- 3. Task 3: Showcase some Graph Data Science (GDS) algorithms for extracting meaningful insights.



Data generation

- Generated data for ~100 patients using Synthea
- Output is in CSV format.
- The generated data resemble real-world healthcare databases.

```
Patients Table Shape -> (127, 10)
Payers Table Shape -> (10, 22)
Providers Table Shape -> (289, 13)
Organizations Table Shape -> (289, 11)
Encounters Table Shape -> (11083, 15)
Careplans Table Shape -> (549, 9)
Conditions Table Shape -> (6374, 7)
Immunizations Table Shape -> (2644, 6)
Medications Table Shape -> (8539, 13)
Observations Table Shape -> (144724, 9)
Procedures Table Shape -> (29819, 10)
Claims Table Shape -> (19622, 31)
Allergies Table Shape -> (143, 15)
Symptoms Table Shape -> (31179, 9)
Supplies Table Shape -> (4849, 6)
```

```
'allergies.csv',
'careplans.csv',
'claims.csv',
'claims_transactions.csv'
'conditions.csv',
'devices.csv',
'encounters.csv',
'imaging_studies.csv',
'immunizations.csv',
'medications.csv',
'observations.csv',
'organizations.csv',
'patients.csv',
'payers.csv',
'payer transitions.csv',
'procedures.csv',
'providers.csv',
'supplies.csv']
```


Overview of the relational Schema



PRD Statistical Data Science & Analytics

20

Step 1: Load data as initial graph

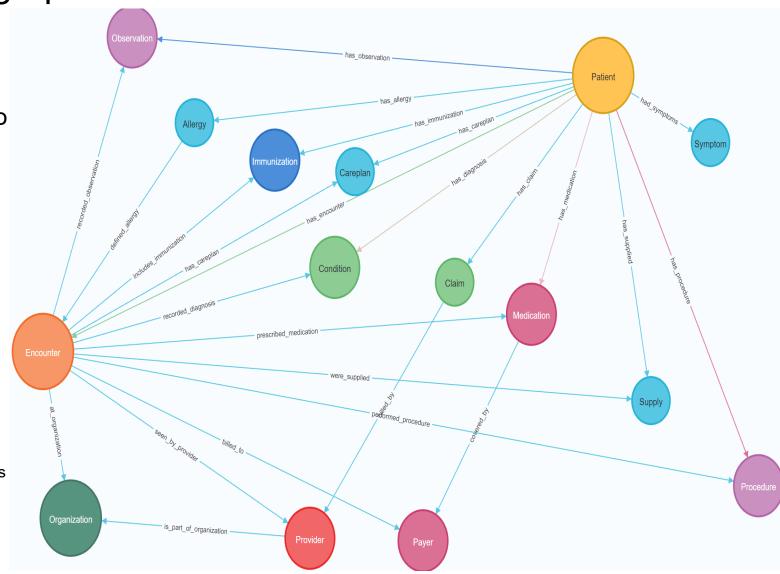
When transforming from relational into a graph format:

- 1) **De-normalize** the relational database to a lower normal form.
- 2) Represent table names as labels.
- 3) Convert each **row into a unique node**.
- 4) Translate joins between tables into relationships

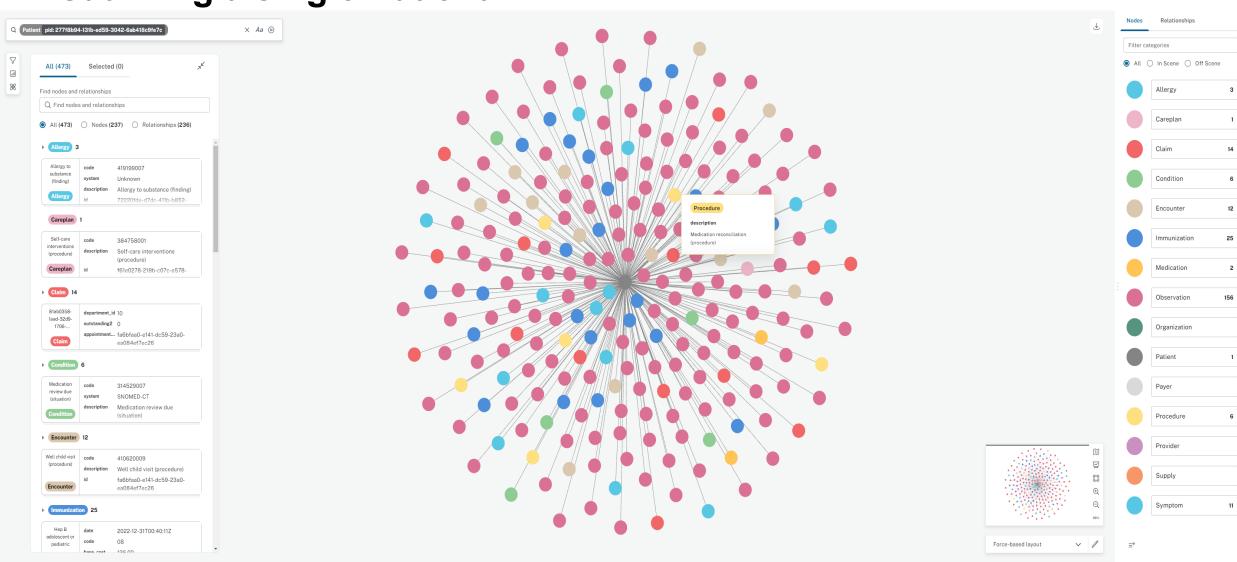
Meta-graph consists of: - Entities: ~260,240

- Relationships: ~505,000

Note: Denormalization is commonly used in analytical workflows for relational systems as it minimizes the number of join operations required during query execution.



Visualizing a single Patient



PRD Statistical Data Science & Analytics Confidential 22

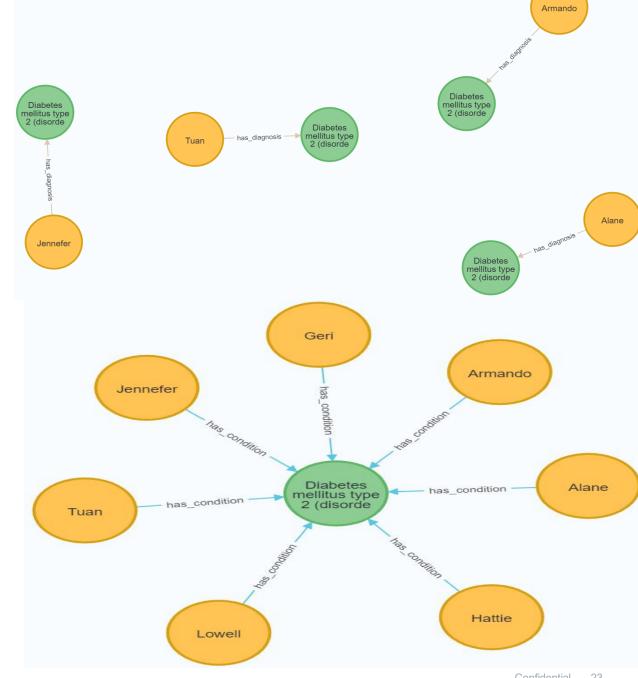
Step 2: Normalizing nodes

Graphs are particularly effective at interconnecting information.

- Objective: identify shared elements across patients.
- Initial graph structure: Each patient was linked exclusively to their own data.
- Approach: Applying entity normalization by deduplicating concept.
- All event-level relationships were preserved.

Resulting meta-graph remains the same but:

- Entities: ~64,179 (approximately 75% fewer than the original)
- Relationships: ~505,000



PRD Statistical Data Science & Analytics Confidential

Step 3: Eliminate Redundancy

Multiple connection paths linking patients, encounters to clinical entities (e.g., conditions).

- Similar patterns exist such as :
 - 1. Patient → has_condition → Condition
 - 2. Patient → has_encounter → Encounter
 - -> includes_condition → Condition
- Rationale for retaining only one pattern:
 - Reason 1: Improve path explosion problem.
 - Reason 2: GDBs excel at traversal.
 - Reason 3: Improve memory efficiency.

Impact:

•Relationships dropped from ~505,000 to ~316,000.



PRD Statistical Data Science & Analytics

Confidential

Step 4: Introduce Hierarchical Relationships

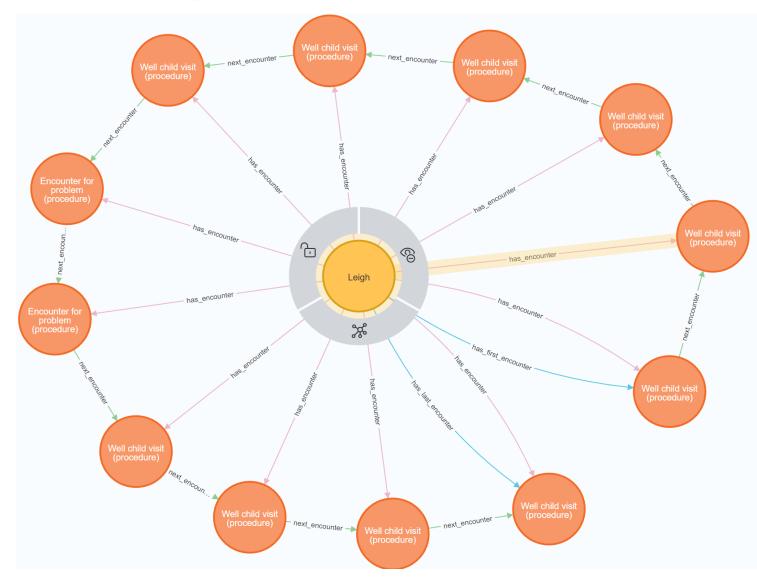
Introduced hierarchical & temporal relationships:

- Encounter → next_encounter → Encounter
- Patient → has_first_encounter → Encounter
- Patient → has_last_encounter → Encounter

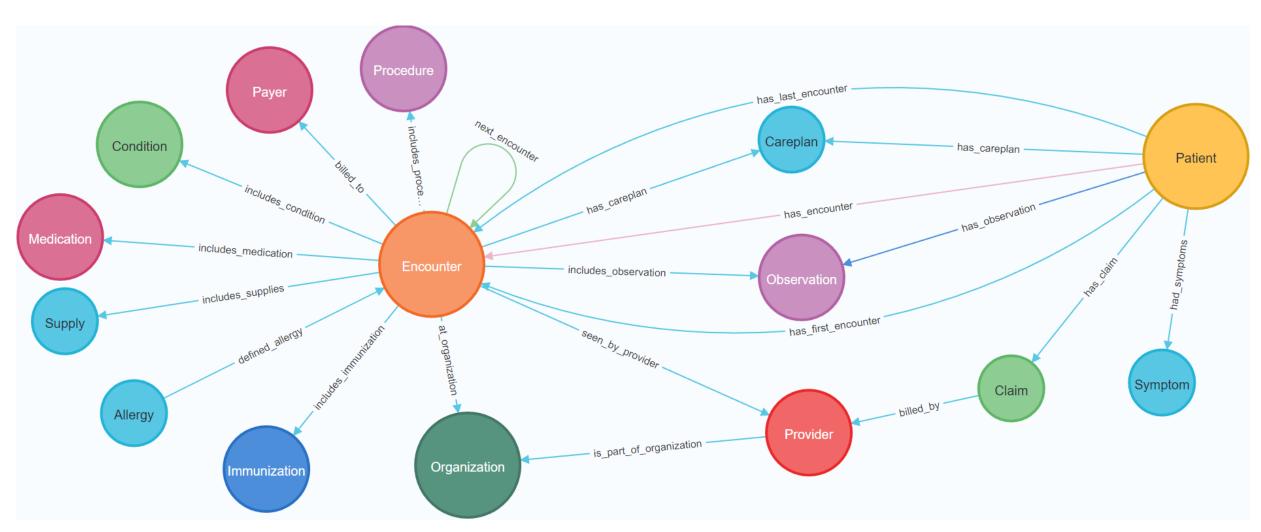
Impact after applying these steps:

•**Entities**: ~64,179

•Relationships: ~330,818

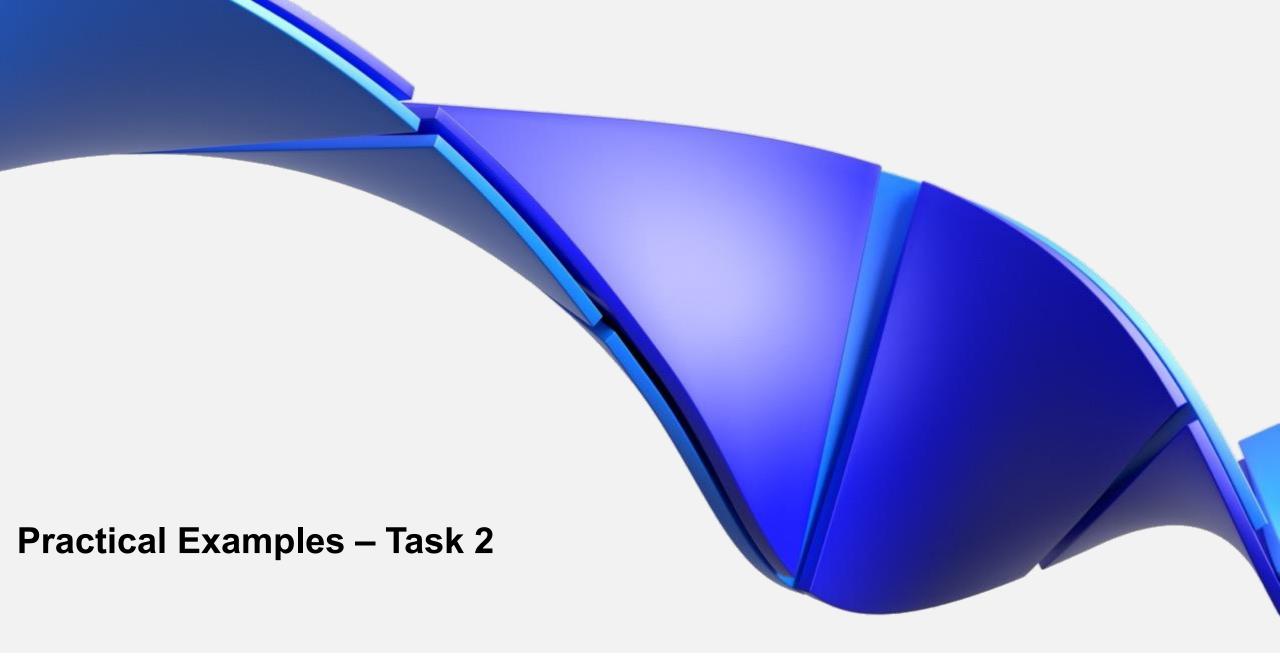


Task 1: Final Meta-Graph



PRD Statistical Data Science & Analytics

Confidential 2

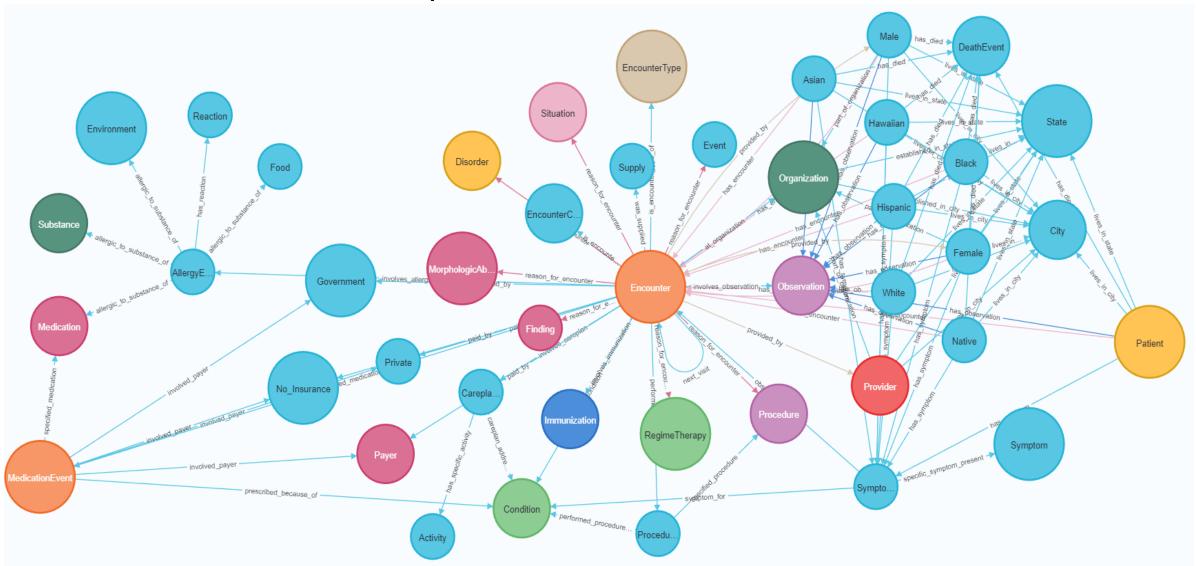


Breakthroughs that change patients' lives

Task 2: Performance Comparison

- Conducted a comparative performance evaluation of relational and graph database systems using identical query scenarios.
- Employed PostgreSQL (RDB) and Neo4j (GDB).
- Both databases were used on the same machine and under similar configurations.
- Generated a dataset of ~80.000 patients (Total Size: ~27 GB)
- Same model schema as task 1 was used with extra modifications:
 - Turned some Properties -> Labels
 - Introduced Intermediate nodes
- Resulting graph characteristics:
 - Entities: ~35,000,000
 - Relationships: ~235,000,000

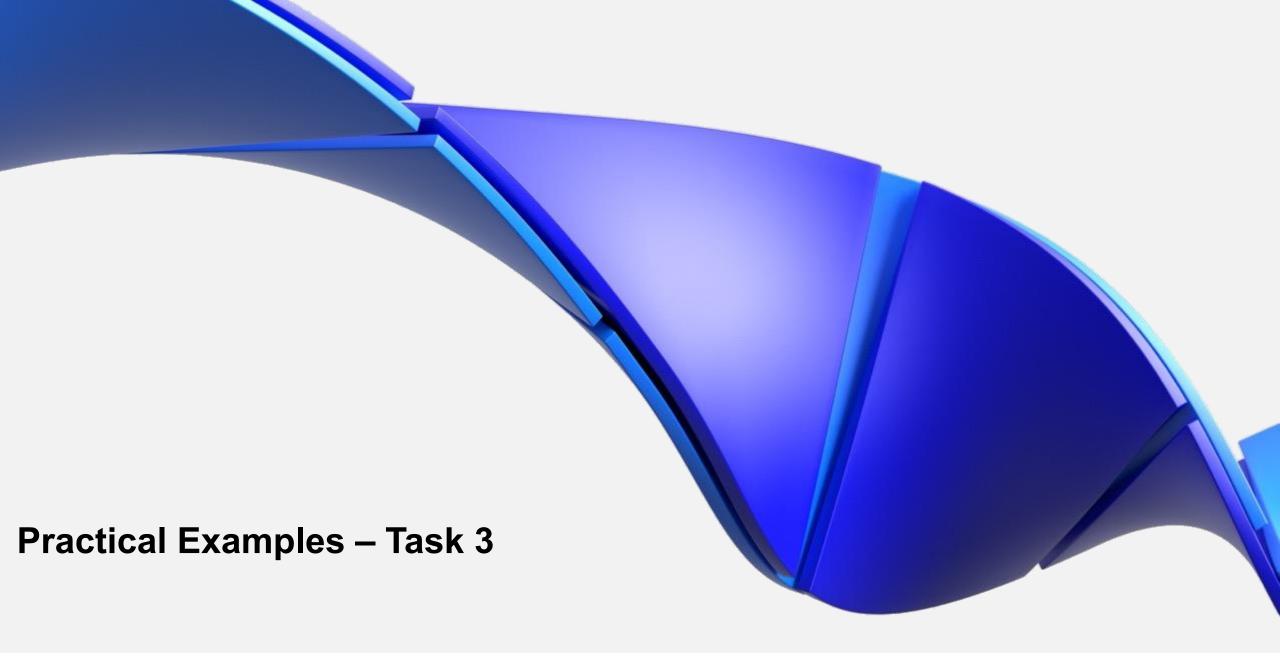
Task 2: Performance Comparison



Task 2: Results

Use case	RDB (Postgresql)	GDB (Neo4j)
Data ingestion time	22 mins	~ 2.1 hours
Memory utilization	36 GB	32 GB
Question 1. Identify patients who experienced a fever within 14 days after an immunization and subsequently received an antipyretic within 7 days.	38.7 sec	16.25 sec
Question 2. Among patients with a death event, determine the most frequent care pathways in the 60 days preceding death.	17.5 sec	10.5 sec
Question 3. Identify pairs of providers who tend to cotreat the same patients for the same symptom within a ±30-day window.	2.2 mins	15.5 sec

- Ingestion time in **GDBs** seems to be ~5.9 **slower** than **RDBs**
- The queries (after having defined the graph structure) perform ~x4 times faster on GDB compared to RDB.
- Despite the above, there are studies that support that as the number of **data increases**, performance difference is more **noticeable**.



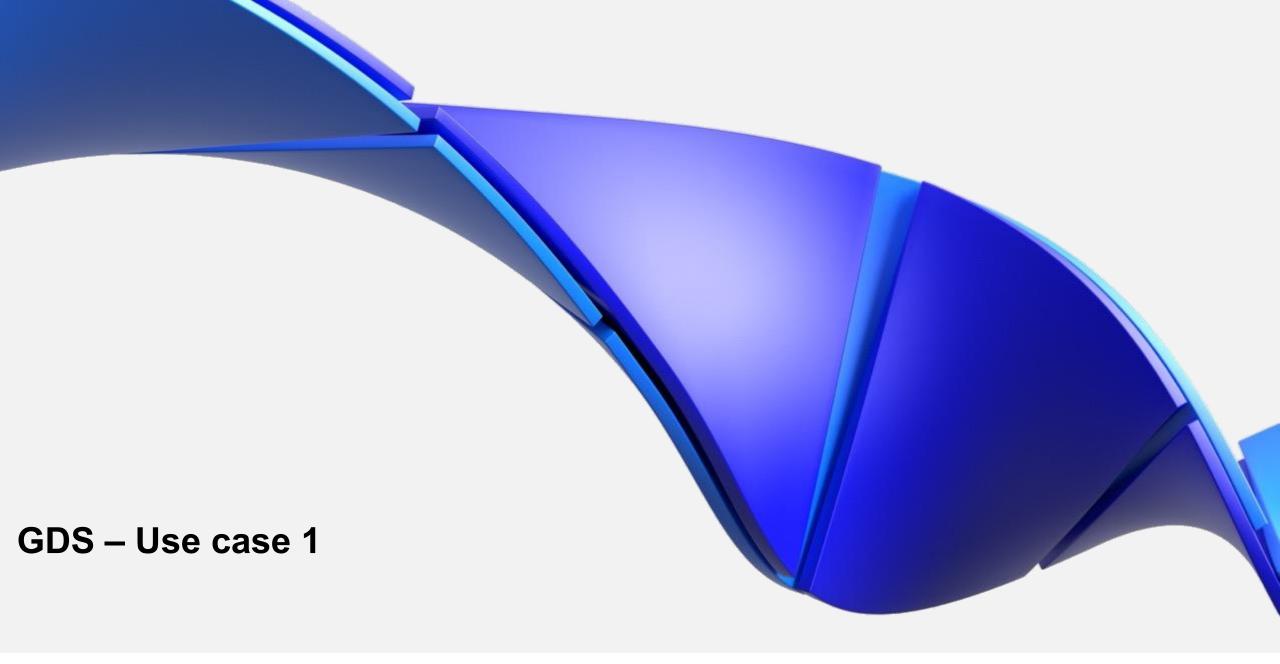
Breakthroughs that change patients' lives

Task 3: Applied Graph Data Science

The final task demonstrates how Graph Data Science (GDS) algorithms can be applied to enhance knowledge discovery within healthcare networks.

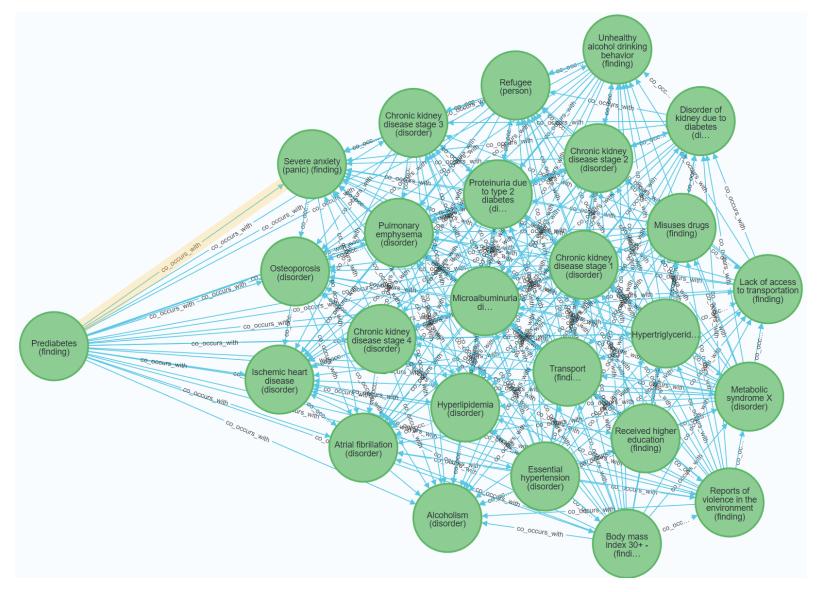
Two analytical questions were addressed:

- What clusters of conditions tend to co-occur across patients?
 - Created a co-occur relationship with weighting to be frequency on pairs on conditions.
 - Applied Louvain community detection to create groups of conditions.
- Which providers act as chokepoints in referral pathways?
 - Created a referral relationship between providers.
 - By selecting patients that within a short window changed providers.
 - Applied Betweeness centrality to find important nodes acted as bridges.



Breakthroughs that change patients' lives

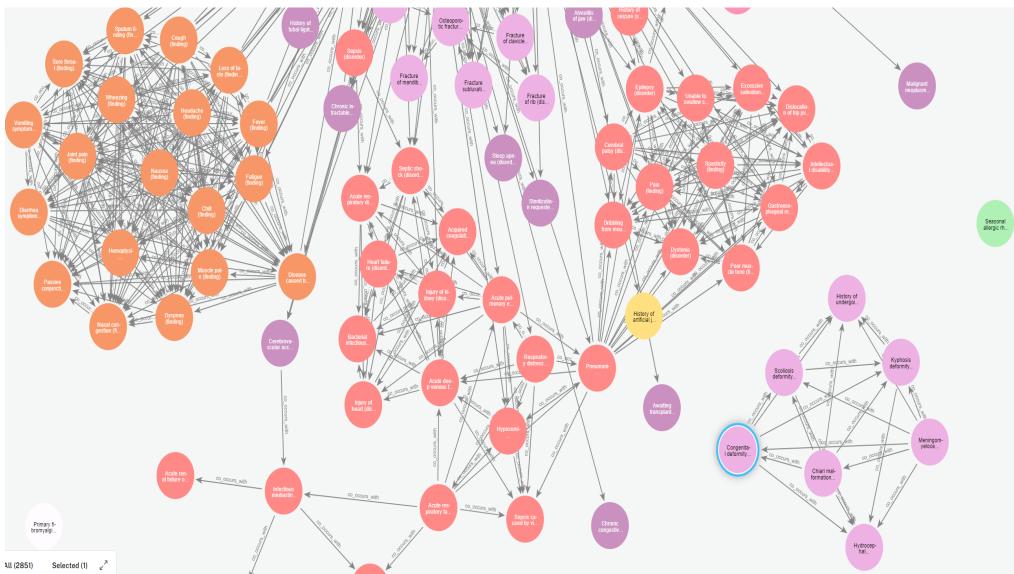
Use case 1: Create Co-occurred conditions



PRD Statistical Data Science & Analytics

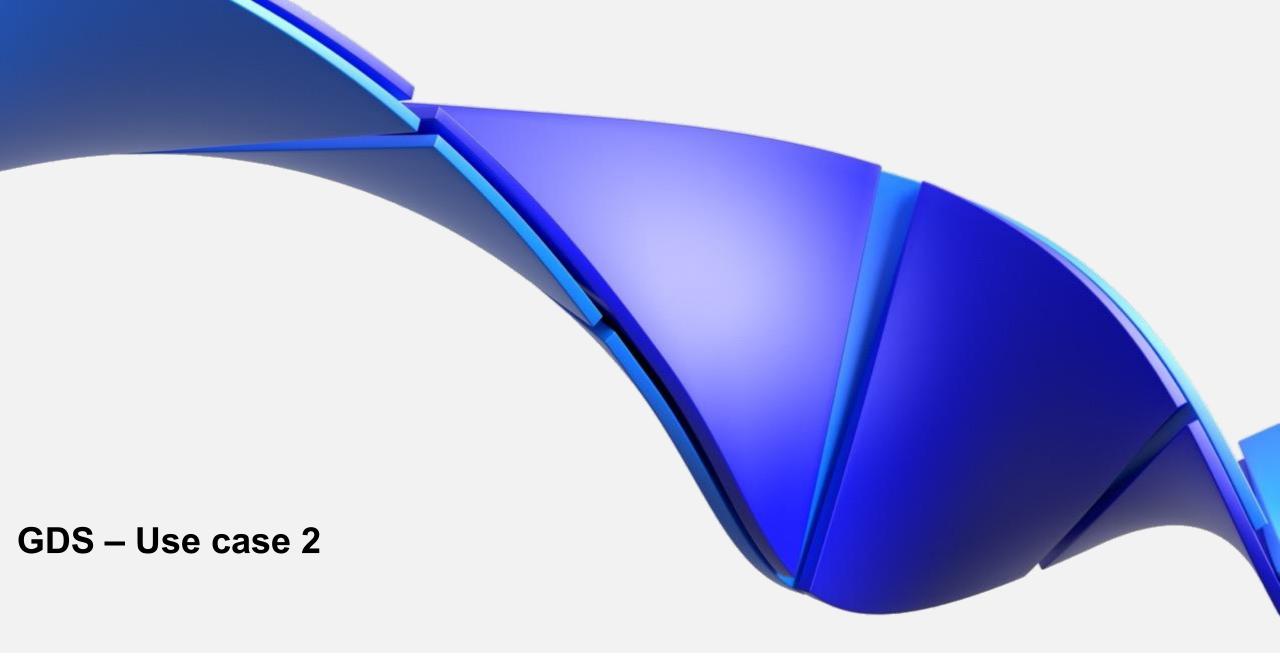
Confidential

Use case 1: Visualizing groups of conditions



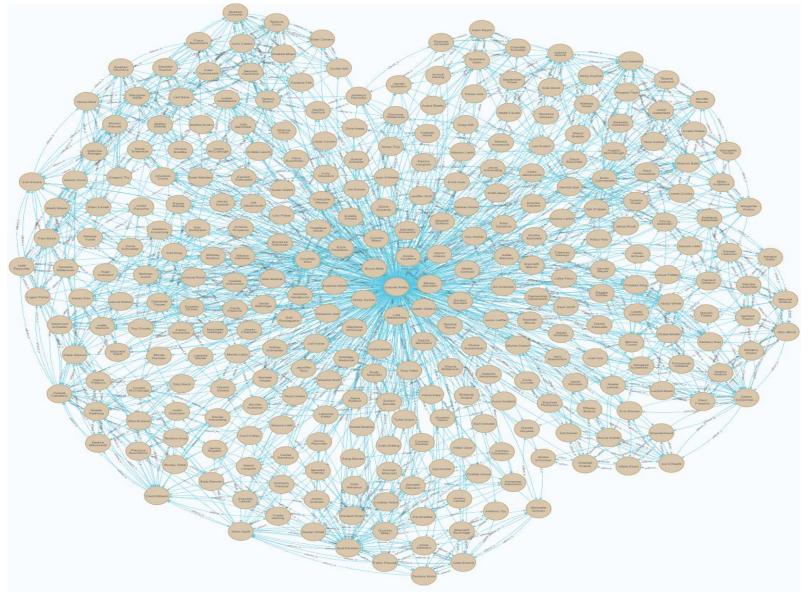
PRD Statistical Data Science & Analytics

Confidential

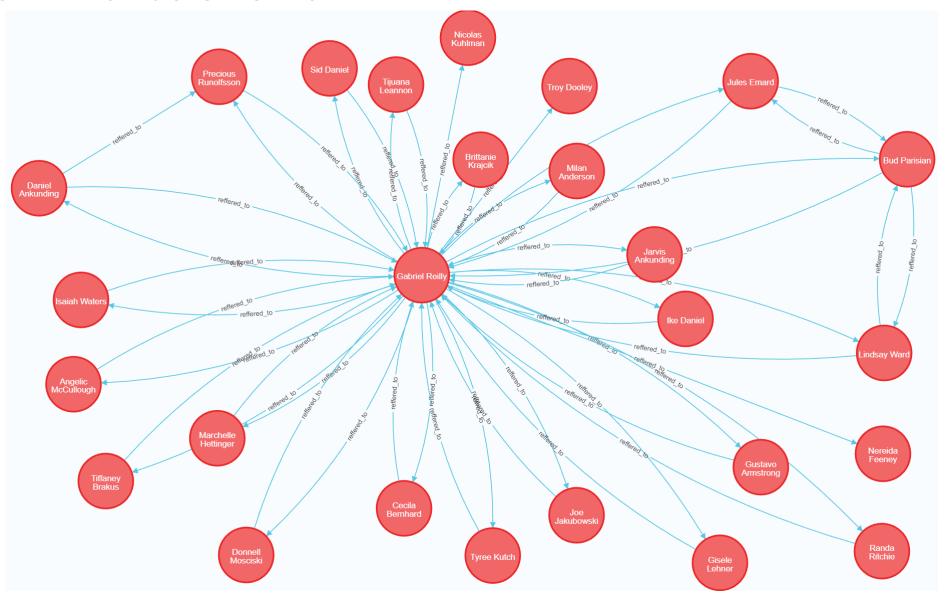


Breakthroughs that change patients' lives

Use case 2: Providers network



Use case 2: Providers network



PRD Statistical Data Science & Analytics

Confidential

Use case 2: Providers network

provider	score
"Gabriel Reilly"	1272233.81822999
"Courtney Kihn"	29378.421248573144
"Bud Parisian"	25932.835528117175
"Cortez Price"	24256.21033923793
"Ana Luisa Gallardo"	17282.83680187145
"Terrie Ratke"	16852.69970083501

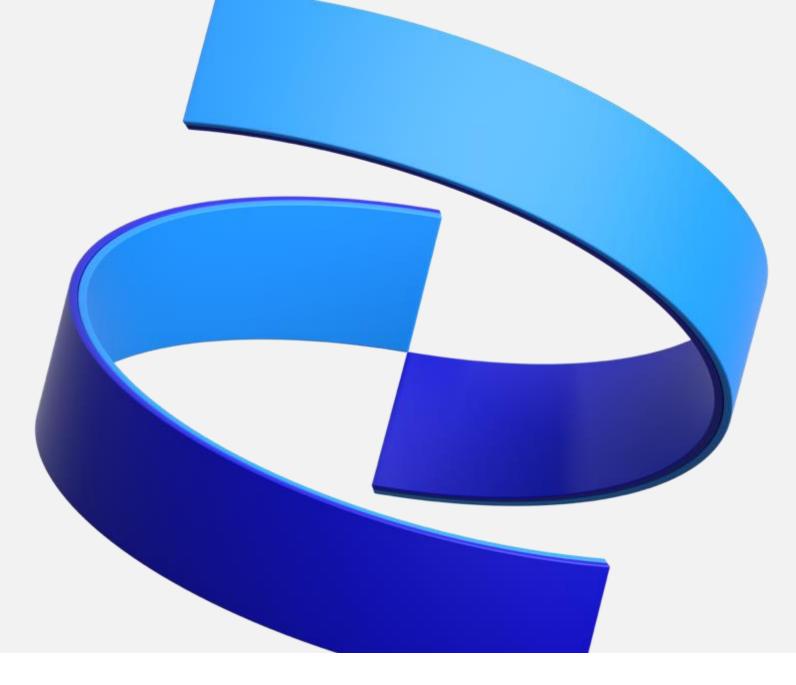
PRD Statistical Data Science & Analytics

Confidential

Key Takeaways

- Synthetic data enables research and innovation without compromising patient privacy and with free of cost.
- Graph modeling preserves complex healthcare relationships, unlocking deeper insights than traditional relational models.
- **Performance trade-off: Graphs** deliver ~4x faster query performance vs **RDBs**, thought ingestion is slower due to **upfront transformation**.
- Graph Data Science Algorithms can reveal hidden patterns, paths and clusters, and important nodes.
- Future potential: Integration with ontologies and multi-modal data (-omics, phenotypes and other) for richer insights.

Thank You



Breakthroughs that change patients' lives