ML15

Everyday Al for Statistical Programmers: (Global
Implementation of a Clinical Analysis Assistant

Mathieu Cayssol Dr. Christoph Centner
Hoffmann—La Roche, Basel, Switzerland

Abstract

The increasing complexity of clinical trial design and statistical analyses has significantly
raised the expectations placed on statistical programmers. With the growing number of
therapeutic areas, study designs, and regulatory requirements, programmers are tasked with
producing high-quality, validated code under tight timelines. In many organizations, code
bases are distributed across multiple projects and repositories, often resulting in fragmented
knowledge and duplicated effort, particularly when creating critical Tables, Listings, and
Graphs (TLGs). Re-using code remains a time-consuming, manual task. The lack of a
centralized, intelligent mechanism to retrieve and reuse previously validated code fragments
exacerbates inefficiencies and increases the risk of inconsistencies across studies.

Enhancing code reusability is therefore a critical priority. By enabling programmers to
quickly locate, adapt, and apply existing validated code, organizations can reduce redundancy,
ensure consistency across analyses, and accelerate time-to-market. Traditional keyword-based
search is inadequate for this task, failing to match a programmer’s semantic intent with
validated code snippets that may use different variable or function names.

This work introduces the Code Search Agent, a novel Al-powered solution that directly
addresses the code fragmentation challenge. The Agent combines generative Al with a
large-scale, metadata-driven code search capability. By indexing over 70,000 programs
repositories and enriching code chunks with LLM-generated summaries, the tool makes
historical programs accessible through natural language queries, thereby lowering the barrier
to reuse. This structured approach enhances efficiency by reducing redundant programming,
while also improving quality, consistency, and standardization across projects. The Code
Search Agent is delivered as a specialized component of the existing Clinical Analysis Assistant
RAG framework, providing an essential intelligent layer for scaling statistical programming
capacity.

Keywords: Al, RAG, MCP, LLM, Agents, statistical programming, clinical analysis, Chatbot,
Clinical Study, Clinical programming

1 Introduction

The operational landscape for statistical programmers is characterized by increasing expectations,
driven by the expansion of therapeutic specialization, the complexity of study protocols, and
increasingly stringent compliance frameworks. In many organizations, a prevalent challenge is
the low rate of code re-utilization across disparate therapeutic areas and operational projects.
While centralized repositories might be available, knowledge is fragmented and the reuse of
existing code is often a manual and time-consuming effort. The lack of a centralized, intelligent
mechanism to retrieve and reuse previously validated code fragments exacerbates inefficiencies
and increases the risk of inconsistencies across studies. Enhancing code reusability is therefore
a critical priority. By enabling programmers to quickly locate, adapt, and apply existing
validated code, organizations can reduce redundancy, ensure consistency across analyses, and
accelerate time-to-market. Furthermore, reusing proven code not only saves time but also
improves quality by leveraging programs that have already been tested and reviewed in prior
studies. Lastly, also harmonization of outputs across studies plays a critical role. The Code
Search Agent directly addresses these challenges by combining generative Al with a large-scale,
metadata-driven code search capability. By indexing over 70,000 programs, the tool makes
historical programs accessible through natural language queries, thereby lowering the barrier to
reuse. This structured approach enhances efficiency by reducing redundant programming, while
also improving quality, consistency, and standardization across projects. Ultimately, such an
intelligent assistant is a key enabler for scaling statistical programming capacity in the era of
increasingly data-intensive clinical trials.

2 Background

2.1 OCEAN Platform Overview

The OCEAN (One CEntralised ANalytics) platform at Roche provides an integrated, governed,
and scalable environment for large-scale clinical programming. It establishes a modern analytics
ecosystem that combines secure storage, containerized workbenches, and version-controlled
development in GitLab. Within this architecture, the full analytical workflow (from raw data
ingestion to submission-ready deliverables) is standardized and traceable.

OCEAN introduces several key evolutions compared to legacy environments:

e A transition from traditional SAS-only workflows to a multi-language ecosystem that
supports both SAS and R, enabling hybrid analyses and modernized pipelines.

e A Git-based workflow [I] for version control, branching, and collaboration, replacing
older file-based paradigms.

Integration of GitLab [2] for repository management, access control, and traceability.

Automated orchestration of analyses via Snakemake, ensuring reproducible and parallel
execution of pipelines across containerized environments.

A clear separation between code, data, and results to reinforce compliance, scalability, and
governance.

As illustrated in figure [2] data flows from raw data stores into governed clinical data reposi-
tories, that allows analysts to work within isolated, containerized workspaces supporting SAS,
R, and Python. Snakemake orchestrates pipeline execution, while GitLab ensures full versioning,
auditability, and collaboration. Together, these components provide a robust foundation for
reproducibility, scalability, and cross-functional collaboration across therapeutic areas.

2.2

Snakemake Orchestration

Z

~
Z
~Z
z
Z

Raw data Data and output Containerized Code
store store Workbench Repository
—

Figure 1: Overview of the clinical programming environment under OCEAN

Challenges

While OCEAN provides a technically advanced and future-proof foundation for clinical program-
ming, its adoption introduces a new level of complexity for users. The shift from traditional,
GUI-based workflows to a multi-language, containerized, and Git-driven ecosystem brings modern
software engineering concepts that are powerful, but initially unfamiliar, to many statistical
programmers. This transformation requires both technical upskilling and cultural adaptation,
as teams move toward collaborative, code-centric practices. Once mastered, these approaches
deliver substantial gains in reproducibility, automation, and analytical quality, yet the transition
itself poses several challenges.
During the rollout of OCEAN, five primary challenges were identified:

Steep learning curve: Users must acquire new skills in Git operations (branching,
merging, version control), container management, and pipeline orchestration. Mastery of
these concepts takes time but is essential for unlocking the platform’s full potential.

Ecosystem transition: Teams accustomed to single-tool environments (e.g., SAS-only
workflows) must adapt to a broader, integrated toolchain spanning GitLab, Snakemake, R,
and Python.

Increased technical depth: Modern workflows demand familiarity with command-line
interfaces, package management, and multi-language debugging. While initially daunting,
these skills enable more reproducible and efficient analyses.

Fragmented information access: Guidance, examples, and validated code are dis-
tributed across multiple repositories, wikis, and documentation systems, making it difficult
for users to locate the right information quickly.

Code discoverability and reuse: A major advantage of OCEAN lies in its modern
Git-based workflow-code is version-controlled and centrally managed in GitLab, providing
unprecedented accessibility and traceability across projects. However, even though validated
programs are now available in one unified environment, identifying, comparing, and reusing
relevant code fragments across repositories remains a time-consuming, manual task. This
gap underscores the need for intelligent tooling to make the wealth of validated code truly
reusable, consistent, and standardized across studies.

To bridge these gaps and accelerate user adoption, the Clinical Analysis Assistant (CAA) was
developed as an intelligent conversational interface on top of OCEAN. By allowing users to interact

with the system through natural language, the assistant simplifies access to documentation,
coding standards, and reusable programs, thereby reducing the cognitive load during onboarding.
Beyond easing the learning curve, CAA enhances long-term productivity by enabling programmers
to focus on scientific analysis rather than technical troubleshooting. Within this framework,
the newly introduced Code Search Agent (CSA) plays a pivotal role, addressing one of the
most persistent challenges in clinical programming: efficiently finding, comparing, and reusing
validated code across projects to promote harmonization, standardization, and faster delivery of
analysis outputs.

3 Solution

3.1 Clinical Analysis Assistant

The Clinical Analysis Assistant (CAA) is an Al-powered conversational layer built on top of the
OCEAN platform that helps clinical programmers efficiently navigate the environment, access
documentation, and reuse validated code. Through a chat-based interface, users can interact
with specialized virtual agents supporting different aspects of the clinical programming workflow.
CAA is implemented using Chainlit to provide the conversational interface and is securely hosted
on Posit Connect [9], leveraging OCEAN'’s existing authentication and access control framework.

% Clinical Analysis Assistant

—— = - = e - —— e e = - - —— e - - - - - e o o o

p N ’ N ’ N V4 \
I o " Orchestrati b | : '
! cean I 1Erehestrabion 1 i Helper ! | Code Search !
I' assistant | ! Debugger I ! ! '
| ’ \ l ! , '

\ \ \ !
N ’ N V] ~ / N 4

Figure 2: Clinical Analysis Assistant (CAA) and its 4 agents

The first three agents focus on platform navigation and troubleshooting: 1) the Ocean
Assistant provides guidance on environment usage and best practices; 2) the Orchestration
Debugger assists in diagnosing pipeline or container execution errors; and 3) the Git Helper
simplifies version-control operations such as branching and merging. Together, these agents
streamline onboarding and daily operations within OCEAN.

The fourth and most recent addition (the Code Search Agent (CSA)) is the focus of
this work. CSA introduces metadata- and semantic-driven search across thousands of GitLab
repositories, enabling programmers to locate validated and reusable code fragments using natural
language queries. By returning results enriched with contextual metadata (e.g., study ID,
description, activity name), CSA transforms code reuse from a manual, time-consuming process
into an efficient and standardized practice across studies.

#£« Ocean Assistant v Readme (4

v 4« Ocean Assistant
Orchestration debugger
Git Helper

&/> Code Search Assistant

Talk to Ocean assistant.

What is the orc command? How to create AE domain with roak?

WorkflowError: MissinglnputException: Missing input files for rule adsl

Do | need to manually set dictionary versi vhen creating TS domain What is the data or non-CRF data in Ocean?

What is the dataflow for non-CRF data in Ocean?

Figure 3: Clinical Analysis Assistant user interface with integrated Code Search Agent.

3.2 Code Search Agent

The Code Search Agent (CSA) is the newest feature or the CAA and enables users to query
large code bases using natural language. It translates the user’s input into a semantic query
enriched with metadata filters (e.g., repository, function name, programming language) to ensure
precise retrieval. The query is then executed against a vector database containing indexed source
code, and the most relevant results are returned and summarized. This workflow accelerates
navigation of complex code bases and improves transparency in retrieval. The overall process is
illustrated in figure [4

Query for semantic retrieval

5 User prompt

"Please find a spaghetti plot for

@/> Top 3 results

'spaghetti plot biomarker data ggplot2”

J

Result 1:

- code link

biomarker data in R using ggplot2”
- study number

rMe‘tm:lo“ta Fields for Fil‘tering \

€

“study_number”: null

- repo name

- program name

- study deseription
Result 2:

"study_deseription”; null, B

"program_name

“orogram_lang"

100,000 chunks
70,000 programs
7,000 studies

VectorDB

Figure 4: High-level workflow of the Code Search Agent, from user query to retrieved results.

The workflow proceeds in three steps:

1. User Input: The user provides a natural language query.

2. Query Transformation: The Agent converts the query into a semantic representation,
augmented with metadata filters, to retrieve contextually relevant information from the
vector database.

3. Result Retrieval and Display: The system returns the most relevant code snippets,
which are summarized and presented to the user along with the semantic query and applied
metadata filters for full transparency.

From a UI perspective, the interaction is shown in figure |5, where users can enter a query,
inspect the results, and view the underlying semantic search parameters.

@ &P Code Search Assistant v Readme

Please find a spaghetti plot for biomarker data in R using ggplot2

@ Used code search from clinreporting v

&> | searched for R programs creating spaghetti plots for biomarker data using ggplot2, focusing on programs named for
graphs (g_*) across clinical studies. Here are the most relevant results:

Results Summary

| found 3 relevant R programs for generating spaghetti plots of biomarker or laboratory data with ggplot2.

Result1

 Study: BP44241

« Program Name: g_bcva_spag.R (g_* = graph/plot program)
« Language: R

« URL:

« Description: Produces a spaghetti plot of Best Corrected Visual Acuity (BCVA) by visit for clinical trial participants,
using ggplot2 to visualize individual subject trajectories colored by treatment sequence.

Result 2

« Study: GN44993 v
« Program Name: g_lb_bm_spa.R (g_* = graph/plot program)

Type your message here...

0

LLMs can make mistake:

Figure 5: User interface for the Code Search Agent

The Agent executes code search operations in the background, ensuring responsiveness. By
collapsing intermediate steps, the interface provides users with immediate access to: (i) the
semantic query used for retrieval, and (ii) the metadata fields applied to refine results. This
design increases transparency and fosters confidence in the accuracy of retrieved information.

Please find a spaghetti plot for biomarker data in R using ggplot2

® Used code search from clinreporting ~

Input

json

{
1

: "spaghetti plot biomarker data ggplot2",

;g

Figure 6: Tool invocation used to query the vector database containing code from the
clinreporting GitLab group.

113

4 Technical Architecture

The Clinical Analysis Assistant is built on three core pillars: reliable data pipelines, retrieval-
augmented generation (RAG), and the Model Context Protocol (MCP). Together, these elements
ensure scalability, compliance, and robust data quality, while enabling seamless integration across
systems. Within this framework, the code search capability is designed according to the same
architectural principles, providing statistical programmers and developers with a consistent and
dependable way to access, query, and understand source code across repositories. We will begin
by briefly introducing the concepts behind RAG and MCP. Next, we will present the overall
chatbot architecture. Finally, we will explain how the dedicated data pipeline enables efficient
and reliable retrieval of data.

4.1 What is RAG?

Retrieval-Augmented Generation (RAG) is a method that combines the strengths of search and
generative Al to deliver more accurate and grounded answers. Instead of relying only on what a
language model has memorized during training, RAG introduces an additional step: bringing in
relevant, external knowledge at the moment a query is asked.

(1) Retrieve —
[\ . -~
{ _

|
I
I
I
|
!
I
I
I
I
1
)
|
|
|
)
]
Response < :
I
|
I
I I
[}
!
|
1
I
I
I
)
\

. J

Figure 7: Retrieval Augmented Generation workflow (RAG)

This process unfolds in three main stages:

1. Retrieve: The user’s query is transformed into an embedding and searched against a
vector database to find the most relevant pieces of information (context).

2. Augment: The retrieved context is combined with the original query to form a richer,
more informative prompt.

3. Generate: The Large Language Model (LLM) uses this augmented prompt to produce a
response that is both coherent and factually grounded.

By connecting these steps together, RAG enables Al systems to dynamically pull in external
knowledge, ensuring their answers are not only fluent but also accurate and up to date. [3] [4]

4.2 What is MCP?

The Model Context Protocol (MCP) was designed to make it easier for Al systems to work with
external tools, databases, and APIs. Normally, every system has its own interface, which makes
integration complicated and fragile. MCP fixes this by providing a standard way for Al to “plug
in” to many different services without custom connectors each time.

MCP Host

L

3 Claude

oA .
/9 Copilot

~

MCP Client |<-
MCP Client |<-

- - = =Json-RPC. = = = = = >

J

Y
MCP Server

- @ J

Y
MCP Server

=

N
MCP Server

<< - - -REST (HTTP) _--@

Private APIs

_ _ Binary/Bsov__ _ _
<7 (reb/rp) 3‘@

Some Databse

<< - - REST (HTTP)- - <

—

Public Web
APIs

Figure 8: Model Context Protocol architecture

MCP works through three main components:

1.

MCP Host: The core environment where the AT application (such as Claude, Cursor, or
a custom app) runs and orchestrates requests.

manages communication, and handles responses.

. MCP Client: Embedded in the host, it translates Al or user requests into MCP calls,

. MCP Server: Connected to external systems, such as private APIs, databases, or public

web services. It executes requests and sends back results in a consistent format.

These components communicate using a lightweight protocol (JSON-RPC). The host and
client handle Al interactions, while servers connect to real-world resources such as a database

query, an internal API, or a public web endpoint. This means the Al does not need to know

the details of each service: it simply communicates through MCP. The benefits are clear: MCP
makes integrations simpler, more reliable, and easier to maintain. Developers can scale their
systems without constantly re-inventing connections, and in multi-agent setups, MCP allows
agents to share tools and workflows smoothly. In short, MCP reduces complexity and accelerates
innovation by giving Al a common language for working with the broader ecosystem. [5] [6] [7]

4.3 CAA and CSA Architecture

In the context of the CAA, and more specifically the CSA, we have designed an architecture
based on the Model Context Protocol (MCP). The objective of this section is to describe the
current MCP Host and MCP Server, and explain how they have been implemented.

MCP Host

("
q:b Chainlit App MCP Server '

70,000 programs
User Does

| Guidelines
Overflow forum

Bsowv
(TeP/IP)

) /tools .
7 Copilot | mcP client |< sonsre - - oo ReST AP > ¥
7 /resources ! Gitlab

'
REST

\

Goog|e chrome (HTTP)
@% extension L /¢ :
N \
———————--- >
. _J
Public Web
APIs

Figure 9: MCP architecture for clinical analysis assistant

MCP Host

The main MCP Host is a Chainlit [§] application deployed on Posit Connect [9]. This setup was
chosen to leverage SSO authentication and ensure application security. The host integrates the
OpenAl Agent SDK, which connects to the MCP Server via the MCP client.

To enhance usability, we provide a Google Chrome extension that avoids frequent tab
switching, thereby improving the overall user experience. By adopting the MCP protocol, we
maintain flexibility and agility in the fast-moving Al landscape. This allows us to integrate the
assistant into any MCP Host.

In the future, our goal is to support direct integration within IDEs (such as GitHub Copilot,
Cursor, and others), thereby embedding the assistant closer to developers’ workflows.

MCP Server

The MCP Server has been implemented using fastMCP, which is built on FastAPI [10]. FastMCP
enables the rapid definition of the three MCP primitives:

e Resources: External knowledge bases or APIs exposed to the agent. For example,
documentation repositories, clinical datasets, or code repositories that the assistant can

query.

e Tools: Functions or APIs that the assistant can call to perform specific tasks. For the
Code Search Assistant, a tool has been defined to retrieve code snippets from the vector
database. This allows the agent to return accurate and contextually relevant code fragments
in response to user queries.

e Prompts: Pre-defined prompt templates that guide the behavior of the agent in specific
contexts (e.g., code explanation, error debugging, or query reformulation).

The MCP Server is deployed as an ASGI web server (via uvicorn) [11] and hosted on Posit
Connect [9]. This ensures scalability, performance, and easy maintainability.

4.4 Data Pipeline

The data pipeline for clinical analysis assistant and more specifically for the code search is a
standard ETL (Extract, Transform, Load). The architecture can be seen as:

10

Apglies only to code chunks
extracted from Gitlab

LM Embedding
@ (=
A A

Generate code Generate embeddings
Summari ies for each chunk

Fles

Online docs @—\

R e e e e

Gitlab T

) : /:\ VectorDB
Lpushe, —pul ! 7000 gogran

Internal ! !'
APIs Vo

Moanifests
Store haghes of chunks

1 a. Generate summaries for each code chunk. MOV\gODB
. Create data hashes and store them in MongoDB.

o

. Read old and new manifests = compute the A (delta).
. From the A, determine which chunks to create / update / delete in the vector database.
. Upsert the embeddings and metadata into the vector database.

P o9

Figure 10: ETL for the CAA (the specifications for CSA are highlighted in blue color)

4.4.1 Extract

The Extract stage is responsible for gathering data from a broad and heterogeneous set of sources.
In total, more than fifteen distinct data sources are integrated, including package documentation,
Excel workbooks (x1sx), Quarto Markdown files [12] (qmd), code repositories stored on GitLab,
internal guidelines, user forum for troubleshooting, and data pulled from internal APIs. Each
source is accessed using dedicated connectors or APIs. At this stage, the system focuses solely
on collecting raw content and associated metadata such as file path, repository, programming
language, document type, and update timestamp. No data segmentation or transformation is
yet performed. The output of this step is a unified pool of raw, structured and unstructured
content ready for downstream processing.

4.4.2 Transform

The Transform stage is where the raw data undergoes normalization, segmentation, enrich-
ment, and embedding preparation. The process begins with text cleaning (removal of markup,
formatting symbols, and irrelevant tokens) and metadata validation to ensure integrity and
consistency across diverse data sources. The cleaned text or code is then decomposed into
smaller, semantically coherent chunks. These chunks represent the smallest retrievable units in
the system and provide the granularity needed for efficient vector-based search. Each chunk is
subsequently assigned a unique data hash, which is used for version control and change detection.
While the hashing logic may vary depending on the data source (for example, based on commit
ID and file path for GitLab code, or checksum and timestamp for documents), the manifest
structure stored in MongoDB remains consistent. These manifests are later used to compute
deltas and maintain synchronization with the vector database.

For CSA, code chunks are extracted from GitLab repositories, which necessitates an addi-
tional transformation step. A LLM generates a natural language summary for each code segment,
describing its functionality, inputs, and outputs from a statistical programmer’s perspective.
Prompt engineering has been performed in collaboration with statistical programmers to ensure

11

that these descriptions are meaningful and relevant within the context of clinical studies. These
summaries improve semantic retrieval by allowing natural language queries to match relevant
code snippets, even when explicit keywords differ.

Finally, embeddings are generated for every chunk, regardless of type. Each chunk is converted
into a high-dimensional vector representation capturing its semantic meaning. This embedding
process enables context-aware retrieval and ensures that similar content across heterogeneous
sources can be surfaced efficiently during query time.

4.4.3 Load

The load stage performs the final synchronization between the transformed dataset and the
operational VectorDB. This process is incremental and governed by manifest comparison: old
and new manifests are retrieved from MongoDB, and their differences (A) are computed to
determine which chunks must be created, updated, or deleted. This delta-driven mechanism
ensures the vector database remains continuously aligned with upstream sources while minimizing
redundant processing. In addition to maintaining data integrity, the delta-based approach also
provides significant cost and compute optimization. By reprocessing only the modified or newly
added chunks, the system avoids unnecessary recomputation of embeddings and redundant
I/O operations. These optimizations make the ETL pipeline both economically sustainable
and operationally scalable for continuous ingestion from multiple data sources. After the delta
computation, all relevant embeddings and metadata are upserted into the VectorDB. The
database currently indexes more than 70,000 programs, 100,000 code chunks, and numerous
other content types such as documentation, guidelines, and forum discussions. By maintaining a
unified semantic index, the system enables high-performance, context-aware retrieval for the
Code Search Assistant and related AI agents, while preserving full traceability and version
integrity across all data sources.

5 Results and Evaluation

The analyzed time period was 18" of March 2024 - 19'" of October 2025 for Clinical Analysis
Assistant and 15 of September 2025 - 19*" of October 2025 for Code Search. Weekends were
excluded in the overall analysis due to the expected decline of usage during those days. Adoption
statistics are presented as mean + SD if not indicated otherwise.

5.1 Adoption and Engagement

For the Clinical Analysis Assistant, a total of 116,507 questions were recorded over the entire
analysis period, with an average of 670 4338 weekly conversations and 1,399 + 682 questions. For
the Code Search Agent, the total count reached 490 questions, with 42 &+ 14 weekly conversations
and a mean of 92 + 43 questions. We recorded 600 unique users for the Clinical Analysis
Assistant and 45 unique users for Code Search. Approximately 92% of all questions during
the period were directed to Ocean Assistant. Figure [11] demonstrates the engagement over time
for Clinical Analysis Assistant and figure [12] for Code Search.

12

Daily Questions

i

8

|
LﬁA IW%“V“‘J'LEQ Iﬁrldd
‘

Distribution of Avg. Questions per Conversation

Daily Questions

Date

Daily Conversations

Date

Distribution of Avg. Questions per Conversation

' N\
R I
1 2) .

A

Figure 12: Engagement metrics for Code Search

13

The most frequently occurring words are illustrated in the bar chart presented in figure
While the Clinical Analysis Assistant serves as a comprehensive platform facilitating navigation
and interaction within Roche’s data analysis ecosystem, its vocabulary reflects a broader and
more generalized usage. In contrast, the Code Search Agent exhibits a more specialized linguistic
profile, emphasizing terminology related to code retrieval and programming across multiple
languages.

Top 10 Most Frequent Words for Clinical Analysis Assistant Top 10 Most Frequent Words for Code Search

R

0 » £
Frequency

2

) 3000 6000
uen:

l

Figure 13: Most frequent used words for prompting in Clinical Analysis Assistant (left) and
Code Search tool (right)

5.2 Impact on Productivity

Preliminary observations suggest that the Code Search Agent can substantially enhance program-
mer productivity by streamlining information retrieval and reducing redundant work. Through
rapid access to validated code snippets, documentation, and programming standards, users can
resolve routine queries and coding challenges in a fraction of the time previously required. The
integration of large-scale code search across historical repositories further amplifies these gains by
enabling the discovery and reuse of existing, high-quality programs. This capability minimizes
duplicate coding efforts, shortens development cycles, and promotes standardization across stud-
ies. Farly internal estimates indicate potential time savings of 20-40% for common programming
tasks, depending on project complexity and user experience. Collectively, these improvements
contribute not only to greater operational efficiency but also to enhanced consistency and quality
in clinical data analyses.

5.3 User Feedback
5.3.1 Clinical Analysis Assistant user Survey

To complement the usage analytics and performance indicators, a comprehensive survey was
conducted at the end of Q1 2025 to assess both the quantitative and qualitative aspects of
user experience with the CAA. The survey aimed to evaluate perceived usefulness, adoption
frequency, and gather open-ended feedback for future improvement. A total of 174 responses
were collected for the usefulness rating (figure left) and 189 responses for the usage frequency
(figure [14] right). The distribution of usefulness ratings (1-5 scale, where 5 represents most
useful) yielded a mean rating of 3.39, indicating a generally positive perception of the Assistants’
value in daily work activities. As shown in figure most users rated the Assistants between 3
and 5, suggesting that it effectively supports their analytical or operational tasks.

14

Distribution of Clinical Analysis Assistant Usefulness Ratings
(5 = Most Useful)

— - Mean: 339

Usefulness Rating (1-5 scale) Usage Frequency

Figure 14: Survey results for CAA usefulness (left) and usage frequency (right)

Regarding usage patterns, the right panel of figure [14]illustrates that weekly engagement was
the most common behavior, followed by less frequent or occasional use. A smaller but consistent
group of respondents reported daily interaction, reflecting steady adoption among core users. In
addition to quantitative metrics, qualitative feedback was also collected through open-ended
responses. These narratives provided valuable insights into user motivations, challenges, and
feature requests, offering a nuanced understanding of how the CAA integrates into existing work-
flows. This feedback has been compiled and shared separately to inform ongoing enhancements,
focusing on usability improvements, clearer guidance, and prioritization of high-impact features.

5.3.2 Code Search Agent User Survey

User evaluations of the CSA demonstrated a consistently positive reception. Participants reported
that the feature was highly effective in supporting their daily programming tasks, particularly in
locating and reusing existing code on GitLab from prior studies. On average, the tool received a
rating of 4 out of 5 points, reflecting strong overall satisfaction with its usability, relevance of
retrieved results, and integration into existing workflows. Users emphasized that the CSA not
only accelerated the search for validated programs but also increased their confidence in code
quality and standardization. This feedback reinforces the tool’s perceived value as a practical
and efficiency-enhancing component of the Clinical Analysis Assistant ecosystem.

6 Limitations and Future Work

While the current implementation of the Code Search Agent (CSA) demonstrates strong potential
in accelerating code retrieval and enhancing reuse within the OCEAN ecosystem, several
limitations and development opportunities remain. First, the integration of CSA is currently
limited to the conversational interface within the Clinical Analysis Assistant. Although this
interface has proven effective for exploratory search, future work aims to achieve deep integration
with development environments through MCP-enabled plugins for RStudio and Visual Studio
Code. Such direct embedding would enable statistical programmers to access semantic code
search and retrieval capabilities within their native coding environments, reducing context
switching and providing zero-friction access to relevant, validated code during active development.
Second, while the current design focuses primarily on code discovery, upcoming iterations will
expand toward code generation in clinical contexts. By integrating the Code Search Assistant
with the AiR (AI for R) Agent, the system will be able to leverage both retrieved historical
programs and generative Al capabilities to produce fit-for-purpose R code aligned with clinical
study requirements. This combined approach will bridge retrieval and synthesis, allowing

15

programmers to adapt existing validated code into new, study-specific analytical pipelines more
efficiently. Finally, future development will explore multi-agent collaboration and study-aware
intelligence. The goal is to create agents that understand the context of a given clinical study,
including its metadata, protocol specifications, and derivation requirements, by dynamically
pulling information from multiple data sources such as the 70,000 indexed programs, study
file systems, and repositories containing statistical guidelines and programming specifications.
Such context-aware agents could autonomously propose or even generate compliant code for
standard derivations and TLGs, accelerating delivery while maintaining quality and traceability.
These planned evolutions will move the CSA beyond code retrieval toward a more proactive and
autonomous assistant, capable of supporting end-to-end clinical programming tasks in alignment
with Roche’s vision for intelligent, reproducible, and scalable analytics.

7 Conclusion

The Codes Search Agent successfully addresses fragmentation and redundancy in statistical
programming by deploying a sophisticated RAG-based, multi-agent framework. With proven
user adoption and significant query volume, the platform has clearly demonstrated its value
in streamlining access to documentation and reusable code, thereby improving quality and
consistency. Looking forward, our roadmap centers on moving beyond static retrieval to achieve
true code intelligence through execution agents and deep IDE integration, ultimately aiming to
deliver autonomous, verifiable, and highly streamlined clinical analytics.

Acknowledgments

We thank Haoyang Ju for his major contributions to the project, and acknowledge the contri-
butions of Vincent Shen, Pawel Rucki, Kathrin Flunkert, Liviu Neagu, Adam Forys, Jian Dali,
Mahdi About, and Helene Royo.

Contact Information

mathieu.cayssol@roche.com
christoph.centner@roche.com

References

[1] Chacon, S., & Straub, B. (2014). Pro Git (2nd ed.). Apress.

[2] GitLab Documentation: Roles and Permissions. (2025). Retrieved October 28, 2025, from
https://docs.gitlab.com/ee/user/permissions.html.

[3] Gupta, S., Ranjan, R., & Singh, S. N. (2024). A Comprehensive Survey of Retrieval-
Augmented Generation (RAG): Evolution, Current Landscape and Future Directions. arXiv
preprint arXiv:2410.12837.

[4] Li, S., Stenzel, L., Eickhoff, C., & Bahrainian, S. A. (2025). Enhancing Retrieval-Augmented
Generation: A Study of Best Practices. arXiw preprint arXiv:2501.07591.

[5] Anthropic. (2024, November 25). Introducing the Model Context Protocol (MCP). Retrieved
from https://www.anthropic.com/news/model-context-protocol.

[6] Model Context Protocol. (n.d.). What is the Model Context Protocol (MCP)? Retrieved
from https://modelcontextprotocol.io/docs/getting-started/introl

16

https://docs.gitlab.com/ee/user/permissions.html
https://www.anthropic.com/news/model-context-protocol
https://modelcontextprotocol.io/docs/getting-started/intro

[7]

[10]

[11]

[12]

Schultz, R. (2025, May 6). How the Model Context Protocol (MCP) Future-Proofs AI Agent
Tool-Calling for Scalable, Secure, Interoperable Workflows. Caiyman.ai. Retrieved from
https://www.caiyman.ai/blog/model-context-protocol-mcp-ai-agents-standard.

Chainlit Documentation: Overview. (2025). Retrieved October 28, 2025, from https:
//docs.chainlit.io/.

Posit Connect: User Guide, Version 2025.09.1. (2025). Retrieved October 28, 2025, from
https://docs.posit.co/connect/.

FastAPI Documentation. (2025). Retrieved October 28, 2025, from https://fastapi.
tiangolo.com/.

Uvicorn: An ASGI Web Server for Python. (2025). Retrieved October 28, 2025, from
https://www.uvicorn.org/.

Quarto Documentation: Guide. (2025). Retrieved October 28, 2025, from https://quarto.
org/docs/guide/.

Husain, H., Wu, H., Gazit, T., Allamanis, M., & Brockschmidt, M. (2019). CodeSearchNet
Challenge: Evaluating the State of Semantic Code Search. arXiv preprint arXiv:1909.09436.

17

https://www.caiyman.ai/blog/model-context-protocol-mcp-ai-agents-standard
https://docs.chainlit.io/
https://docs.chainlit.io/
https://docs.posit.co/connect/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://www.uvicorn.org/
https://quarto.org/docs/guide/
https://quarto.org/docs/guide/

	Introduction
	Background
	OCEAN Platform Overview
	Challenges

	Solution
	Clinical Analysis Assistant
	Code Search Agent

	Technical Architecture
	What is RAG?
	What is MCP?
	CAA and CSA Architecture
	Data Pipeline
	Extract
	Transform
	Load

	Results and Evaluation
	Adoption and Engagement
	Impact on Productivity
	User Feedback
	Clinical Analysis Assistant user Survey
	Code Search Agent User Survey

	Limitations and Future Work
	Conclusion

